首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver arginyl-tRNA synthetase is found in extracts either as a component (Mr = 72,000) of the multienzyme aminoacyl-tRNA synthetase complex or as a low molecular weight (Mr = 60,000) free protein. The two forms are thought to be identical except for an extra peptide extension at the NH2-terminus of the larger form which is required for its association with the complex, but is unessential for catalytic activity. It has been suggested that interactions among synthetases in the multienzyme complex are mediated by hydrophobic domains on these peptide extensions of the individual proteins. To test this model we have purified to homogeneity the larger form of arginyl-tRNA synthetase and compared its hydrophobicity to that of its low molecular weight counterpart. We show that whereas the smaller protein displays no hydrophobic character, the larger protein demonstrates a high degree of hydrophobicity. No lipid modification was found on the high molecular weight protein indicating that the amino acid sequence itself is responsible for its hydrophobic properties. These findings support the proposed model for synthetase association within the multienzyme complex.  相似文献   

2.
Rat liver arginyl-tRNA synthetase is found in extracts either as a component (Mr = 72,000) of a high molecular weight aminoacyl-tRNA synthetase complex or as a low molecular weight (Mr = 60,000) free form. Previous studies suggested that the free protein arises from the complex-derived form by a limited proteolysis that removes the portion of the protein required for its association with the complex. In order to determine the location in the protein and some structural properties of this extra 12-kDa portion, the complex-derived and free forms were each extensively purified and compared by peptide mapping using limited V-8 protease digestion. The two proteins showed 7-8 peptide bands in common, as well as 1-2 unique bands each. Treatment of each of the proteins with carboxypeptidase Y prior to digestion with V-8 protease indicated that the two proteins have a common COOH-terminal peptide. Amino acid analyses of the two arginyl-tRNA synthetases revealed a strong similarity; however, the complex-derived form contained a large excess of basic amino acids. These results demonstrate directly that the complex-derived and free forms of arginyl-tRNA synthetase are closely related proteins, but that the former includes a basic, NH2-terminal extension absent in the free form. The role of this extra segment in the polyanion-binding properties of eukaryotic synthetases and in their structural organization into high molecular weight complexes is discussed.  相似文献   

3.
Lysyl-tRNA synthetase occurs in the high molecular weight form in rat liver. The high molecular weight lysyl-tRNA synthetase has been previously demonstrated to exist as multienzyme complexes of aminoacyl-tRNA synthetases. The multienzyme complexes can be dissociated by hydrophobic interaction chromatography and yield fully active, free lysyl-tRNA synthetase. The free form is found to be twice as active as the complexed form in lysylation. Bisubstrate and product inhibition kinetics of lysylation are systematically carried out for highly purified free lysyl-tRNA synthetase and the 18 S synthetase complex. Surprisingly, the two enzyme forms exhibit distinctly different kinetic patterns in bisubstrate and product inhibition kinetics under identical conditions. The 18 S synthetase complex shows kinetic patterns consistent with an ordered bi uni uni bi ping pong mechanism, while the results of free lysyl-tRNA synthetase do not. We conclude that structural organization of lysyl-tRNA synthetase beyond quaternary structure of proteins may alter the enzyme behavior.  相似文献   

4.
The size distribution of lysyl- and arginyl-tRNA synthetases in crude extracts from rat liver was re-examined by gel filtration. It is shown that irrespective of the addition or not of several proteinase inhibitors, lysyl-tRNA synthetase was present exclusively as a high-Mr entity, while arginyl-tRNA synthetase occurred as high- and low-Mr forms, in the constant proportions of 2:1, respectively. The polypeptide molecular weights of the arginyl-tRNA synthetase in these two forms were 74000 and 60000, respectively. The high-Mr forms of lysyl- and arginyl-tRNA synthetases were co-purified to yield a multienzyme complex, the polypeptide composition of which was virtually identical to that of the complexes from rabbit liver and from cultured Chinese hamster ovary cells. Of the nine aminoacyl-tRNA synthetases, specific for lysine, arginine, methionine, leucine, isoleucine, glutamine, glutamic and aspartic acids and proline, which characterize the purified complex, each, except prolyl-tRNA synthetase, was assigned to the constituent polypeptides by the protein-blotting procedure, using the previously characterized antibodies to the aminoacyl-tRNA synthetase components of the corresponding complex from sheep liver.  相似文献   

5.
Summary Two preparations with arginyl-tRNA synthetase activity have been obtained from rabbit liver post-microsomal fraction: a) a high-molecular-weight containing the multienzyme aminoacyl-tRNA synthetase complex and b) a low-molecular-weight preparation containing free enzymes. Thermal inactivation of arginyl-tRNA synthetase in both preparations has been compared in a solution which was successively supplemented with tRNA, reduced glutathione, L-ascorbic acid, ZnCl2 and Triton × 100. Moreover, hydrophobic properties of both enzyme preparations have been compared. It was found that the complexed arginyl-tRNA synthetase is more stable than the free enzyme. A role of hydrophobic interactions in the maintenance of the complexed enzyme stability is suggested.Abbreviations DFP Diisopropylfluorophosphate - GSH Glutathione (reduced) - PMSF Phenylmethylsulfonyl Fluoride - Ap4A Diadenosine 5, 5-P1, P4-tetraphosphate - Preparation I high-molecular-weight arginyl-tRNA synthetase preparation - Preparation II low-molecular-weight arginyl-tRNA synthetase preparation  相似文献   

6.
Tyrosyl-tRNA synthetase of beef liver has been isolated and its properties have been studied. Tyrosyl-tRNA synthetase is a structural dimer of alpha 2 type. Mr of the enzyme subunit is about 59 kDa. Km values for substrates have been determined and compared with kinetic properties of tyrosyl-tRNA synthetases from different sources. The polymorphism of tyrosyl-tRNA synthetase was studied. The enzyme was separated into two different forms by chromatography on phosphocellulose P 11. P1-form is active only in the amino acid activation reaction. This form is not due to the phosphorylation of the enzyme. The low molecular weight form (38 kDa) was also isolated. This form appeared due to the limited endogenic proteolysis of the main form and retained full activity in the aminoacylation reaction. Tyrosyl-tRNA synthetase from beef liver has non-specific affinity to rRNA-sepharose.  相似文献   

7.
Methionyl-tRNA synthetase occurs free and as high-molecular-weight multi-enzyme complexes in rat liver. The free form is purified to near homogeneity by conventional column chromatography and affinity chromatography on tRNA-Sepharose. The native molecular weight of free methionyl-tRNA synthetase is 64 500, based on its sedimentation coefficient of 4.5 S and Stokes radius of 33 A. The free methionyl-tRNA synthetase apparently belongs to alpha-type subunit structure, since the subunit molecular weight is 68 000, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Methionyl-tRNA synthetase is dissociated from the high-molecular-weight synthetase complex by controlled trypsinization, according to Kellermann, O., Viel, C. and Waller, J.P. (Eur. J. Biochem. 88 (1978) 197-204). The dissociated, free methionyl-tRNA synthetase is subsequently purified to near homogeneity. The subunit structure of dissociated methionyl-tRNA synthetase is identical to that of endogenous free methionyl-tRNA synthetase. Anti-serum raised against Mr 104 000 protein in the synthetase complex, specifically inhibited methionyl-tRNA synthetase in both the free and the high-molecular-weight forms to the same extent. These results suggest that the occurrence of multiple forms of methionyl-tRNA synthetases in mammalian cells may, in part, be due to proteolytic cleavage.  相似文献   

8.
The subcellular distribution of five aminoacyl-tRNA synthetases from yeast, including lysyl-, arginyl- and methionyl-tRNA synthetases known to exist as high-molecular-weight complexes in lysates from higher eukaryotes, was investigated. To minimize the risks of proteolysis, spheroplasts prepared from exponentially grown yeast cells were lysed in the presence of several proteinase inhibitors, under conditions which preserved the integrity of the proteinase-rich vacuoles. The vacuole-free supernatant was subjected to sucrose density gradient centrifugation. No evidence for multimolecular associations of these enzymes was found. In particular, phenylalanyl-tRNA synthetase activity was not associated with the ribosomes, whereas purified phenylalanyl-tRNA synthetase from sheep liver, added to the yeast lysate prior to centrifugation, was entirely recovered in the ribosomal fraction. A mixture of lysates from yeast and rabbit liver was also subjected to sucrose gradient centrifugation and assayed for methionyl- and arginyl-tRNA synthetase activities, under conditions which allowed discrimination between the enzymes originating from yeast and rabbit. The two enzymes from rabbit liver were found to sediment exclusively as high-molecular-weight complexes, in contrast to the corresponding enzymes from yeast, which displayed sedimentation properties characteristic of free enzymes. The preservation of the complexed forms of mammalian aminoacyl-tRNA synthetases upon mixing of yeast and rabbit liver extracts argues against the possibility that failure to observe complexed forms of these enzymes in yeast was due to uncontrolled proteolysis. Furthermore, this result denies the presence, in the crude extract from liver, of components capable of inducing artefactual aggregation of the yeast aminoacyl-tRNA synthetases, and thus indirectly argues against an artefactual origin of the multienzyme complexes encountered in lysates from mammalian cells.  相似文献   

9.
Secretory component is a receptor for polymeric immunoglobulins on epithelial cells and hepatocytes that facilitates transport of polymeric immunoglobulins into external secretions. Little is known about the transcellular migration of secretory component-polymeric IgA complexes or the membrane forms of secretory component. We therefore examined rat bile and liver membranes to identify and compare the various molecular species of secretory component. Bile or liver membrane proteins were electrophoresed in sodium dodecyl sulfate-polyacrylamide gels and electrophoretically transferred to nitrocellulose membranes. Protein profiles on blots were probed with antisecretory component antiserum, and the immunoreactive bands were visualized by indirect immunoperoxidase staining. Bile collected in the presence of proteolytic inhibitors showed an immunoreactive doublet band (Mr = 82,000 and 78,000) in the molecular weight range of free secretory component. By contrast, free secretory component in bile collected in the absence of proteolytic inhibitors and purified by affinity chromatography migrated as a single protein with an Mr = 70,000. Both components of the free secretory component doublet bound dimeric IgA when blots were probed with human dimeric IgA. Crude liver membranes prepared in the presence of proteolytic inhibitors showed two immunoreactive secretory component-containing bands, Mr = 107,000 and 99,000, whereas membranes prepared without proteolytic inhibitors showed two smaller immunoreactive bands; one of these proteolytically severed proteins comigrated with the 82,000-dalton free secretory component in bile. These results indicate that membrane forms of secretory component are present in rat liver. The observations that the membrane secretory component is larger than biliary free secretory component and yields biliary SC-like forms of secretory component upon proteolysis support the hypothesis that free secretory component in bile is a proteolytic product of larger liver membrane-associated secretory component.  相似文献   

10.
The complexes of valyl-tRNA synthetase with tRNAIVal and arginyl-tRNA synthetase with tRNAIIArg from E. coli were studied by light scattering measurements and analytical ultracentrifugation of concentrations as low as 40 μg/ml. The molecular weights determined from these studies were 260,000 ± 2,000 for the valyl-tRNA synthetase·tRNA complex, and 310,000 ± 1,500 for the arginyl-tRNA synthetase·tRNA complex at pH 7.1. The stoichiometry for the complexes are apparently 2:1 for valyl-tRNA synthetase and tRNA and 4:1 in the case of the arginyl-tRNA synthetase and tRNA. From the angular dependence of the scattered intensity a radius of gyration of 54.5 Å for the complex between valyl-tRNA synthetase and tRNA was found, whereas for the other complex a value of 59.1 Å was found.  相似文献   

11.
Eukaryotic aminoacyl-tRNA synthetases occur in multienzyme complexes in contrast to their prokaryotic counterparts. A core 12 S rat liver complex (Mr 290,000) was recently purified to homogeneity consisting of two polypeptides with Mr 73,000 and 65,000 identified as lysyl- and arginyl-tRNA synthetase, respectively (Dang et al. (1982) Biochemistry 21,1959-1966). Using the modified hydrodynamic theory of Kirkwood (Kirkwood, J.R. (1954) J. Polym. Sci. 12,1-14), we have determined that the model most consistent with the hydrodynamic properties of the 12 S complex is a tetrameric tetrahedral model.  相似文献   

12.
Two arginyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.13, arginine: ribonucleic acid ligase adenosine monophosphate) activities were found in extracts of Escherichia coli strains AB1132 and NP2. The two arginyl-tRNA synthetase activities in extracts of strain AB1132 were found to be separable by diethylaminoethyl-cellulose column chromatography, Sephadex column fractionation, and by sucrose density gradient centrifugation. In addition, in the standard assay using extracts of strain AB1132 there were two pH optima for arginyl-tRNA synthetase activity. Furthermore, when arginyl-tRNA synthetase of strain NP2 was fractionated by hydroxylapatite column chromatography, two activities were observed which were similar to those of strain AB1132.  相似文献   

13.
Yeast arginyl-tRNA synthetase and aspartyl-tRNA synthetase like nucleotidyl transferases previously investigated interact with the Blue-Dextran-Sepharose affinity ligand through their tRNA binding domain: the enzymes are readily displaced from the affinity column by their cognate tRNAs but not by ATP or a mixture of ATP and the cognate amino acid in contrast to other aminoacyl-tRNA synthetases. In the absence of Mg++, the arginyl-tRNA synthetase can be dissociated from the column by tRNAAsp and tRNAPhe which have been shown to be able to form a complex with the synthetase, but in presence of Mg++ the elution is only obtained by the specific tRNA.The procedure described here can thus be used: (i) to detect polynucleotide binding sites in a protein; (ii) to estimate the relative affinities of different tRNAs for a purified synthetase; (iii) to purify an aminoacyl-tRNA synthetase by selective elution with the cognate tRNA.  相似文献   

14.
Arginyl-tRNA synthetase from baker's yeast (Saccharomyces cerevisiae, strain 836) was obtained pure by a large-scale preparative method, which involves four chromatographic columns and one preparative polyacrylamide gel electrophoretic step. The enzyme has a high specific activity (9000 U/mg) and consists of a single polypeptide chain of molecular weight approximately 73000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecylsulphate. Amino acid analysis of the enzyme permitted calculation of the absorption coefficient of arginyl-tRNA synthetase (A(1 mg/ml 280 nm)=1.26). Concerning kinetic parameters of the enzyme we found the following Km values: 0.28 muM, 300 muM, 1.5 muM for tRNA(Arg III), ATP and arginine in the aminoacylation reaction, and 1400 muM, 2.5 muM, and 50 muM for ATP, arginine and PP(i) in the ATP-PP(i) exchange reaction. Arginyl-tRNA synthetase required tRNA(Arg III) to catalyse the ATP-PP(i) exchange reaction.  相似文献   

15.
The interaction between tRNA conformers inactive in aminoacylation and leucyl-tRNA synthetase has been investigated. Heat inactivation of the enzyme in the presence of inactive tRNA conformers is shown to lead to a marked increase of inactivation rate while active tRNA conformers, on the other hand, reveal a protecting effect. To study the properties of the enzyme complexed with different tRNA conformers limited proteolysis has been used. Active tRNA conformers are found to protect leucyl-tRNA synthetase against hydrolysis while inactive ones tend to intensify it. Inactive tRNA conformers are also shown to inhibit the aminoacylation of native tRNA in vitro. On the basis of these data biologically inactive conformers of animal tRNA are assumed to form an unproductive complex with leucyl-tRNA synthetase and the structure of the enzyme involved in such interaction is supposed to be more labile and 'extended' than that in complex with active tRNA conformers.  相似文献   

16.
To determine whether tRNA or aminoacyl-tRNA synthetase is responsible for spermine stimulation of rat liver Ile-tRNA formation, homologous and heterologous Ile-tRNA formations were carried out with Escherichia coli and rat liver tRNA(Ile) and their respective purified Ile-tRNA synthetases. Spermine stimulation was observed only when tRNA from the rat liver was used. Spermine bound to rat liver tRNA(Ile) but not to the purified aminoacyl-tRNA synthetase complex. Kinetic analysis of Ile-tRNA formation revealed that spermine increased the Vmax and Km values for rat liver tRNA(Ile). The Km value for ATP and isoleucine did not change significantly in the presence of spermine. Furthermore, higher concentrations of rat liver tRNA(Ile) tended to inhibit Ile-tRNA formation if spermine was absent. Spermine restored isoleucine-dependent PPi-ATP exchange in the presence of rat liver tRNA(Ile), an inhibitor of this exchange. The nucleotide sequence of rat liver tRNA(Ile) was determined and compared with that of E. coli tRNA(Ile). Differences in nucleotide sequences of the two tRNAs(Ile) were observed mainly in the acceptor and anticodon stems. Limited ribonuclease V1 digestion of the 3'-32P-labeled rat liver tRNA(Ile) showed that both the anticodon and acceptor stems were structurally changed by spermine, and that the structural change by spermine was different from that by Mg2+. The influence of spermine on the ribonuclease V1 digestion of E. coli tRNA(Ile) was different from that of rat liver tRNA(Ile). The results suggest that the interaction of spermine with the acceptor and anticodon stems may be important for spermine stimulation of rat liver Ile-tRNA formation.  相似文献   

17.
Arginyl-tRNA synthetase has been purified approximately 550 fold from crude extract of human placenta by the following purification steps: Ammonium sulfate fractionation, chromatographies of DEAE-cellulose and CM-Sephadex and Sephadex G-100 gel filtration. Final preparation of this enzyme has specific activity of 123 nmole of arginyl-tRNA formed per mg of protein and was free from other aminoacyl-tRNA synthetase activities. Recognition of various arginine tRNAs with this enzyme was studied using kinetic analysis of arginylation of arginine tRNA and also arginine tRNA dependent ATP-PPi exchange reaction. Affinity of this enzyme with arginine tRNA was determine from Vmas/Km values and it was in the order of rabbit, Chum salmon, B. subtilis, E. coli and yeast in both systems.  相似文献   

18.
Three forms (E1, E2 and E3) of leucyl-tRNA synthetase (LeuRS) were separated by DEAE-cellulose chromatography of total aminoacyl-tRNA synthetases from cow lactating mammary gland. The method of purification of all three components is described. E1 is a dimeric molecule (alpha 2) of molecular weight 182 000. Two other forms of molecular weight 67 000 and 64,000 consist of a single polypeptide chain as determined by polyacrylamide gel electrophoresis. Optimum conditions and kinetic parameters of leucyl-tRNA formation were studied for every enzyme form. The low values of Vmax and thermostability are characteristic of E3. All forms of LeuRS interact with 6 isoaccepting tRNA(Leu) from lactating mammary gland and can activate leucine in the absence of tRNA. E2 and E3 are supposed to derive from the native enzyme by endogenous proteolysis. The physico-chemical properties of native LeuRS from lactating mammary gland are compared with those of LeuRS's from other sources.  相似文献   

19.
S X Lin  J P Shi  X D Cheng  Y L Wang 《Biochemistry》1988,27(17):6343-6348
A Blue Sephadex G-150 affinity column adsorbs the arginyl-tRNA synthetase of Escherichia coli K12 and purifies it with high efficiency. The relatively low enzyme content was conveniently purified by DEAE-cellulose chromatography, affinity chromatography, and fast protein liquid chromatography to a preparation with high activity capable of catalyzing the esterification of about 23,000 nmol of arginine to the cognate tRNA per milligram of enzyme within 1 min, at 37 degrees C, pH 7.4. The turnover number is about 27 s-1. The purification was about 1200-fold, and the overall yield was more than 30%. The enzyme has a single polypeptide chain of about Mr 70,000 and binds arginine and tRNA with 1:1 stoichiometry. For the aminoacylation reaction, the Km values at pH 7.4, 37 degrees C, for various substrates were determined: 12 microM, 0.9 mM, and 2.5 microM for arginine, ATP, and tRNA, respectively. The Km value for cognate tRNA is higher than those of most of the aminoacyl-tRNA synthetase systems so far reported. The ATP-PPi exchange reaction proceeds only in the presence of arginine-specific tRNA. The Km values of the exchange at pH 7.2, 37 degrees C, are 0.11 mM, 2.9 mM, and 0.5 mM for arginine, ATP, and PPi, respectively, with a turnover number of 40 s-1. The pH dependence shows that the reaction is favored toward slightly acidic conditions where the aminoacylation is relatively depressed.  相似文献   

20.
Lysyl- and arginyl-tRNA synthetases have been found to exist in multiple molecular weight forms in rat liver. The small molecular weight forms of lysyl- and arginyl-tRNA synthetases copurify throughout a five step chromatographic procedure resulting in a purification of 370- and 140-fold, respectively. The enzymes appear to be homogeneous on Sephadex G-200 and elute at an apparent molecular weight of 240,000. Gas chromatography reveals that the synthetases contain nearly 14% carbohydrate by weight. The carbohydrates present are: mannose, fucose, glucose, galactose, N-acetylglucosamine and N-acetylgalactosamine. This is the first report that aminoacyl-tRNA synthetases may exist as glyco-proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号