首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclitol 1d-4-O-methyl-myo-inositol (d-ononitol) is accumulated in certain legumes in response to abiotic stresses. S-Adenosyl-l-methionine:myo-inositol 6-O-methyltransferase (m6OMT), the enzyme which catalyses the synthesis of d-ononitol, was extracted from stems of Vigna umbellata Ohwi et Ohashi and purified to apparent homogeneity by a combination of conventional chromatographic techniques and by affinity chromatography on immobilized S-adenosyl-l-homocysteine (SAH). The purified m6OMT was photoaffinity labelled with S-adenosyl-l-[14C-methyl]methionine. The native molecular weight was determined to be 106 kDa, with a subunit molecular weight of 40 kDa. Substrate-saturation kinetics of m6OMT for myo-inositol and S-adenosyl-l-methionine (SAM) were Michaelis-Menten type with K m values of 2.92 mM and 63 M, respectively. The SAH competitively inhibited the enzyme with respect to SAM (K i of 1.63 M). The enzyme did not require divalent cations for activity, but was strongly inhibited by Mn2+, Zn2+ and Cu2+ and sulfhydryl group inhibitors. The purified m6OMT was found to be highly specific for the 6-hydroxyl group of myo-inositol and showed no activity on other naturally occurring isomeric inositols and inositol O-methyl-ethers. Neither d-ononitol, nor d-3-O-methyl-chiro-inositol, d-1-O-methyl-muco-inositol or d-chiro-inositol (end products of the biosynthetic pathway in which m6OMT catalyses the first step), inhibited the activity of the enzyme.Abbreviations DTT dithiothreitol - m6OMT myo-inositol 6-O-methyltransferase - SAH S-adenosyl-l-homocysteine - SAM S-adenosyl-l-methionine We are greatful to Professor M. Popp (University of Vienna) for helpful discussion and comment. This work was supported by Grant P09595-BIO from the Austrian Science Foundation (FWF).  相似文献   

2.
Transport of nickel ions was studied in Alcaligenes eutrophus. Two transport systems for nickel ions exist to satisfy the nickel demand for the lithotrophic hydrogen metabolism. A major nickel transport activity exhibited an apparent affinity constant (K m) of 17 M nickel chloride. This activity was competitively inhibited by Mg2+, Mn2+, Zn2+, and Co2+. A minor nickel transport activity was determined in the presence of high (0.8 mM) magnesium. This activity was not inhibited by Zn2+ or Mn2+; its K m was determined to be 0.34 M nickel chloride. These kinetics suggested a second transport system in A. eutrophus. The membrane potential of A. eutrophus was decreased upon the addition of ammonium ions leading to a decreased nickel transport. This inhibition could be reversed by fructose or by hydrogen indicating an energy dependent nickel transport. Protonophores inhibited the nickel transport. However, inhibitors of ATP synthase like dicyclohexylcabodimide or venturicidin had little or no effect on nickel transport. These data indicated that the transport was coupled to the proton motive force.  相似文献   

3.
Parker  David R. 《Plant and Soil》1993,(1):461-464
Chelator-buffered nutrient solutions, in which computed free Zn2+ activities are buffered at 10-10.0 M by including an excess of a synthetic chelator such as EDTA, have recently shown promise as a means of precisely regulating Zn nutritional status. A further refinement that would eliminate the confounding effect of high (and often phytotoxic) shoot P concentrations in solution-grown, Zn-deficient plants is also desirable. Several crop species were grown in 120-L of HEDTA-buffered solutions that contained just 10+-1 M P. Critical free Zn2+ activities ranged from 10 to 60 pM, and relative yields as low as 32% of control were achieved. Concentrations of P in the older leaves were very high (up to 46 mg g-1) at low (Zn2+), suggesting that P toxicity can occur even without the high P concentrations (about 1 mM) typically used in Hoagland-type solutions. A second study was undertaken to better simulate soil conditions, wherein diffusion of P from the solid phase to the root is rate-limiting. Commercial hydroxyapatite (HAP) was enclosed in a pouch constructed of dialysis tubing, such that dissolution and diffusion occurred in response to plant depletion of P. Maize (Zea mays L.) and wheat (Triticum aestivum L.) can be supplied with P at adequate levels using this approach, and acutely Zn-deficient plants did not hyperaccumulate P. However, two dicots tested were too P-inefficient to grow normally with HAP as the sole P source.  相似文献   

4.
Nitrate reductase (NR; EC 1.6.6.1) in spinach (Spinacia oleracea L.) leaves was inactivated in the dark and reactivated by light in vivo. When extracted from dark leaves, NR activity was lower and more strongly inhibited by Mg2+ relative to the enzyme extracted from leaves harvested in the light. When dark extracts were desalted at pH 6.5 and preincubated at 25° C prior to assay, enzyme activity (assayed either in the presence or absence of Mg2+) remained essentially constant, i.e. there was no spontaneous reactivation in vitro. However, addition of certain metabolites resulted in a time- and concentration-dependent activation of NR in vitro. Effective activators included inorganic phosphate (Pi), 5-AMP, and certain of its derivatives such as FAD and pyridine nucleotides (both oxidized and reduced forms). All of the activators increased NR activity as assayed in the absence of Mg2+, whereas some activators (e.g. Pi, 5-AMP and FAD) also reduced Mg2+ inhibition. The reduction of Mg2+ inhibition was also time-dependent and was almost completely prevented by a combination of okadaic acid plus KF, suggesting the involvement of dephosphorylation catalyzed by endogenous phosphatase(s). In contrast, the activation of NR (assayed minus Mg2+) was relatively insensitive to phosphatase inhibitors, indicating a different mechanism was involved. Compounds that were not effective activators of NR included sulfate, ribose-5-phosphate, adenosine 5-monosulfate, coenzyme A, ADP and ATP. We postulate that NR can exist in at least two states that differ in enzymatic activity. The activators appear to interact with the NR molecule at a site distinct from the NADH active site, and induce a slow conformational change (hysteresis) that increases NR activity (assayed in the absence of Mg2+). Possibly as a result of the conformational change caused by certain activators, the regulatory phospho-seryl groups are more readily dephosphorylated by endogenous phosphatases, thereby reducing sensitivity to Mg2+ inhibition. Preliminary results suggest that light/dark transitions in vivo may alter the distribution of NR molecules between the low- and high-activity forms.Abbreviations AP5A P1, P5-di(adenosine-5)pentaphosphate - DTT dithiothreitol - Mops 3-(N-morpholino)propanesulfonic acid - NR NADH:nitrate reductase - NRA nitrate reductase activity Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643. This work was also supported in part by grants from the U.S. Department of Energy (Grant DE-AIO5-91 ER 20031) and USDA-NRI (Grant 93-373-5-9231). The authors thank Dr. W.M. Kaiser (Lehrstuhl Botanik I der Universität, Würzburg, Germany) for discussions and Dr. C. Lillo (Rogaland University Center, Stavanger, Norway) for sharing results prior to publication.  相似文献   

5.
The first enzyme (named GTP cyclohydrolase) in the pathway for the biosynthesis of pteridines has been partially purified from extracts of late pupae and young adults of Drosophila melanogaster. This enzyme catalyzes the hydrolytic removal from GTP of carbon 8 as formate and the synthesis of 2-amino-4-hydroxy-6-(d-erythro-1,2,3-trihydroxypropyl)-7,8-dihydropteridine triphosphate (dihydroneopterin triphosphate). Some of the properties of the enzyme are as follows: it functions optimally at pH 7.8 and at 42 C; activity is unaffected by KCl and NaCl, but divalent cations (Mg2+, Mn2+, Zn2+, and Ca2+) are inhibitory; the K m for GTP is 22 m; and the molecular weight is estimated at 345,000 from gel filtration experiments. Of a number of nucleotides tested, only GDP and dGTP were used to any extent as substrate in place of GTP, and these respective compounds were used only 1.8% and 1.5% as well as GTP.This work was supported by research grants from the National Institutes of Health (AM03442) and the National Science Foundation (GB33929).  相似文献   

6.
A gene (thaI) corresponding to l-arabinose isomerase from Thermus strain IM6501 was cloned by PCR. It comprised 1488 nucleotides and encoded a polypeptide of 496 residues with a predicted molecular weight of 56019 Da. The deduced amino acid sequence had 96.8% identity with the l-arabinose isomerase of Geobacillus stearothermophilus. Recombinant ThaI with N-terminal hexa-tistidine tags was over-expressed in Escherichia coli and purified by affinity chromatography using Ni-NTA resin. The purified ThaI was thermostable with maximal activity at 60°C at pH 8 for 30 min of reaction. Zn2+ and Ni2+ inactivated the catalytic activity of ThaI, 5 mM Mn2+ enhanced the bioconversion yield by 90%. The bioconversion yield of 54% from d-galactose to d-tagatose was obtained by recombinant ThaI at 60°C over 3 d.  相似文献   

7.
A calcium-activated neutral proteinase was purified from myelin of bovine brain white matter. Myelin purified in the presence of EDTA (2 mM) was homogenized in 50 mM Trisacetate buffer at pH 7.5, containing 4 mM EDTA, 1 mM NaN3, 5 mM -mercaptoethanol and 0.1% Triton X-100 for two hours. After centrifugation at 87,000g for 1 hour, the supernatant was subjected to purification through successive column chromatography as follows: i) DEAE-cellulose, ii) Ultrogel (AC-34) filtration, iii) Phenyl-Sepharose, iv) a second DEAE-cellulose. The enzyme activity was assayed using azocasein as substrate. The myelin enzyme was purified 2072-fold and SDS-PAGE analysis of the purified enzyme revealed a major subunit of 72–76 K. The enzyme was inhibited by iodoacetate (1 mM), leupeptin (1 mM), E-64C (1.6 mM), EGTA (1 mM), antipain (2 mM) and endogenous inhibitor calpastatin (2 g). It required 0.8 mM Ca2+ for half-maximal activation and 5 mM Ca2+ for optimal activation. Mg2+ (5 mM) was ineffective while Zn2+ and Hg2+ were inhibitory. The pH optimum was ranged from 7.5–8.5. Treatment of myelin with Triton X-100 increased the enzyme activity by 10-fold suggesting it is membrane bound whereas the purufied enzyme was not activated by Triton X-100 treatment. The presence of CANP in myelin may mediate the turnover of myelin proteins and myelin breakdown in degenerative brain diseases.  相似文献   

8.
The purpose of the present study was to investigate the in vitro and the in vivo effects of cadmium, zinc, mercury and lead on -aminolevulinic acid dehydratase (ALA-D) activity from radish leaves. The in vivo effect of these metals on growth, DNA and protein content was also evaluated. The results demonstrated that among the elements studied Cd2+ presented the highest toxicity for radish. 50% inhibition of ALA-D activity (IC50) in vitro was at 0.39, 2.39, 2.29, and 1.38 mM Cd2+, Zn2+, Hg2+ and Pb2+, respectively. After in vivo exposure Cd2+, Zn2+, Hg2+ and Pb2+ inhibited ALA-D by about 40, 26, 34 and 15%, respectively. Growth was inhibited by about 40, 10, 25, and 5% by Cd2+, Zn2+, Hg2+, and Pb2+, respectively. DNA content was reduced about 35, 30, 20, and 10% for Cd2+, Zn2+, Hg2+, and Pb2+, respectively. The metal concentration in radish leaves exposed to Cd2+, Zn2+, Hg2+, and Pb2+ was 18, 13, 6, and 7 mol g–1, respectively. The marked ability of radish to accumulate Cd2+ and Zn2+ raises the possibility of using this vegetable as a biomonitor of environmental contamination by these metals.  相似文献   

9.
Maize (Zea mays L.) grown on low (0.8 mM) NO 3 - , as well as untransformed and transformed Nicotiana plumbaginifolia constitutively expressing nitrate reductase (NR), was used to study the effects of NO 3 - on the NR activation state. The NR activation state was determined from the relationship of total activity extracted in the presence of ethylenediaminetetracetic acid to that extracted in the presence of Mg2+. Light activation was observed in both maize and tobacco leaves. In the tobacco lines, NO 3 - did not influence the NR activation state. In excised maize leaves, no correlation was found between the foliar NO 3 - content and the NR activation state. Similarly, the NR activation state did not respond to NO 3 - . Since the NR activation state determined from the degree of Mg2+-induced inhibition of NR activity is considered to reflect the phosphorylation state of the NR protein, the protein phosphatase inhibitor microcystin LR was used to test the importance of protein phosphorylation in the NO 3 - -induced changes in NR activity. In-vivo inhibition of endogenous protein phosphatase activity by microcystin-LR decreased the level of NR activation in the light. This occurred to the same extent in the presence or absence of exogenous NO 3 - . We conclude that NO 3 - does not effect the NR activation state, as modulated by protein phosphorylation in either tobacco (a C3 species) or maize (a C4 species). The short-term regulation of NR therefore differs from the NO 3 - -mediated responses observed for phosphoenolpyruvate carboxylase and sucrose phosphate synthase.Abbreviations Chl chlorophyll - MC microcystin-LR - PEP-Case phosphoenolpyruvate carboxylase - SPS sucrose-phosphate synthase We are indebted to Madeleine Provot and Nathalie Hayes for excellent technical assistance. This work was funded by EEC Biotechnology Contract No. BI02 CT93 0400, project of technical priority, Network D — Nitrogen Utilisation and Efficiency.  相似文献   

10.
An indole 2,3-dioxygenase was purified ca 38-fold from maize leaves. The enzyme had an MW of about 98000, an optimum pH of 5.0 and the energy of activation was 9.1 kcal/mol. The Kmax for indole was 1.4 × 10?4 M. The enzyme was inhibited by diethyldithiocarbamate, salicylaldoxime and sodium dithionite. The inhibition by diethyldithiocarbamate was specifically reversed by Cu2+. The dialysed enzyme was stimulated by Cu2+. Four atoms of oxygen were utilized in the disappearance of 1 mole of indole. Inhibition of the enzyme by -SH compounds and -SH group inhibitors, and their partial removal by Cu2+ only, suggested the involvement of -SH groups in binding of Cu2+ at the catalytic site.  相似文献   

11.
The intracerebroventricular administration of Zn2+ (0.3 mol/10 l) causes epileptic seizures characterized by running fits, jumping, vocalization, fasiculation of facial muscles, myoclonic movements of the limbs and tonic-clonic convulsions. These episodes are blocked or reversed by -aminobutyric acid (0.4 mol/10 l). When assayed under conditions where pyridoxal phosphate was not added, the activity of glutamic acid decarboxylase decreased significantly in hippocampus from 18.9 to 15.3 and 9.7 mol14CO2 formed/gram proteins/20 min, 15 and 30 min following administration of Zn2+. The inhibition of glutamic acid decarboxylase by Zn2+ was selective occurring only in hippocampus and not in the hypothalamus, amygdala, caudate or thalamus. The inhibition of glutamic acid decarboxylase was not due to a reduction in the concentration of endogenous pyridoxal phosphate which remained unaltered in hippocampus following Zn2+ administration.  相似文献   

12.
The rotenone sensitive NADH: menaquinone oxidoreductase (NDH-I or complex I) from the thermohalophilic bacterium Rhodothermus marinus has been purified and characterized. Three of its subunits react with antibodies against 78, 51, and 21.3c kDa subunits of Neurospora crassa complex I. The optimum conditions for NADH dehydrogenase activity are 50°C and pH 8.1, and the enzyme presents a K M of 9 M for NADH. The enzyme also displays NADH:quinone oxidoreductase activity with two menaquinone analogs, 1,4-naphtoquinone (NQ) and 2,3-dimethyl-1,4-naphtoquinone (DMN), being the last one rotenone sensitive, indicating the complex integrity as purified. When incorporated in liposomes, a stimulation of the NADH:DMN oxidoreductase activity is observed by dissipation of the membrane potential, upon addition of CCCP. The purified enzyme contains 13.5 ± 3.5 iron atoms and 3.7 menaquinone per FMN. At least five iron—sulfur centers are observed by EPR spectroscopy: two [2Fe–2S]2+/1+ and three [4Fe–4S]2+/1+ centers. By fluorescence spectroscopy a still unidentified chromophore was detected in R. marinus complex I.  相似文献   

13.
A soluble protein phosphatase from the promastigote form of the parasitic protozoanLeishmania donovani was partially purified using Sephadex G-100, DEAE-cellulose and again Sephadex G-100 columns. The partially purified enzyme showed a native molecular weight of about 42, 000 in both Sephadex G-100 and sucrose density gradient centrifugation. The sedimentation constant, stokes radius and frictional ratio were found to be 3.43S, 2.8 nm and 1.20 respectively. The enzyme preferentially utilized phosphohistone as the best exogenous substrate. Mg2+ ions were essential for enzyme activity; among other metal ions Mn2+ can replace Mg2+ to a certain extent whereas Ca2+, Co2+ and Zn2+ could not substitute for Mg2+. The pH optimum of the enzyme was 6.5–7.5 and the temperature optimum 37°C. The apparent Km for phosphohistone was 7.14 M. ATP, ADP, inorganic phosphate and pyrophosphate had inhibitory effect on the enzyme activity whereas no inhibition was observed with sodium tartrate and okadaic acid. These results suggest thatL. donovani promastigotes possess a protein phosphatase which has similar characteristics with the mammalian protein phosphatase 2C.Abbreviations PMSF phenylmethylsulfonyl fluoride - DTT dithiothreitol - TCA trichloroacetic acid - BSA bovine serum albumin - EDTA ethylenediamine tetraacetic acid - ATP adenosine triphosphate - ADP adenosine diphosphate - AMP adenosine monophosphate - EGTA Ethyleneglycol-bis-(-aminoethyl ether) N,N,N,N-tetraacetic acid  相似文献   

14.
The sialidase secreted byClostridium chauvoei NC08596 was purified to apparent homogeneity by ion-exchange chromatography, gel filtration, hydrophobic interaction-chromatography, FPLC ion-exchange chromatography, and FPLC gel filtration. The enzyme was enriched about 10 200-fold, reaching a final specific activity of 24.4 U mg–1. It has a relatively high molecular mass of 300 kDa and consists of two subunits each of 150 kDa. The cations Mn2+, Mg2+, and Ca2+ and bovine serum albumin have a positive effect on the sialidase activity, while Hg2+, Cu2+, and Zn2+, chelating agents and salt decrease enzyme activity. The substrate specificity, kinetic data, and pH optimum of the enzyme are similar to those of other bacterial sialidases.Abbreviations FPLC fast protein liquid chromatography - NCTC National Collection of Type Cultures - ATCC American Type Culture Collection - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - buffer A 0.02m piperazine, 0.01m CaCl2, pH 5.5 - buffer B 0.02m piperazine, 0.01m CaCl2, 1.0m NaCl, pH 5.5 - buffer C 0.1m sodium acetate, 0.01m CaCl2, pH 5.5 - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - Neu5Ac N-acetylneuraminic acid - BSM bovine submandibular gland mucin - GD1a IV3Neu5Ac, II3Neu5Ac-GgOse4Cer - GM1 II3Neu5Ac-GgOse4Cer - MU-Neu4,5Ac2 4-methylumbelliferyl--d-N-acetyl-4-O-acetylneuraminic acid - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - EDTA ethylenediamine tetraacetic acid - EGTA ethylene glycol bis(2-aminoethyl-ethen)-N,N,N,N-tetraacetic acid - BSA bovine serum albumin - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - IEF isoelectric focusing - IEP isoelectric point  相似文献   

15.
Purified human serum butyrylcholinesterase, which exhibits cholinesterase, aryl acylamidase, and peptidase activities, was cross-reacted with two different monoclonal antibodies raised against human serum butyrylcholinesterase. All three activities were immunoprecipitable at different dilutions of the two monoclonal antibodies. At the highest concentration of the antibodies used, nearly 100% of all three activities were precipitated, and could be recovered to 90–95% in the immunoprecipitate. The peptidase activity exhibited by the purified butyryl-cholinesterase was further characterized using both Phe-Leu and Leu-enkephalin as substrates. ThepH optimum of the peptidase was in the range of 7.5–9.5 and the divalent cations Co2+, Mn2+, and Zn2+ stimulated its activity. EDTA and other metal complexing agents inhibited its activity. Thiol agents and -SH group modifiers had no effect. The serine protease inhibitors, diisopropylfluorophosphate and phenyl methyl sulfonyl fluoride, did not inhibit. When histidine residues in the enzyme were modified by diethylpyrocarbonate, the peptidase activity was not affected, but the stimulatory effect of Co2+, Mn2+, and Zn2+ disappeared, suggesting the involvement of histidine residues in metal ion binding. These general characteristics of the peptidase activity were also exhibited by a 50 kD fragment obtained by limited -chymotrypsin digestion of purified butyrylcholinesterase. Under all assay conditions, the peptidase released the two amino acids, leucine and phenylalanine, from the carboxy terminus of Leu-enkephalin as verified by paper chromatography and HPLC analysis. The results suggested that the peptidase behaved like a serine, cysteine, thiol-independent metallopeptidase.  相似文献   

16.
The enzyme catalysing the first step in the anaerobic degradation pathway of phenylacetate was purified from a denitrifying Pseudomonas strain KB 740. It catalyses the reaction phenylacetate+CoA+ATP phenylacetyl-CoA+AMP+PPi and requires Mg2+. Phenylacetate-CoA ligase (AMP forming) was found in cells grown anaerobically with phenylacetate and nitrate. Maximal specific enzyme activity was 0.048 mol min-1 x mg-1 protein in the mid-exponential growth phase. After 640-fold purification with 18% yield, a specific activity of 24.4 mol min-1 mg-1 protein was achieved. The enzyme is a single polypeptide with Mr of 52 ±2 kDa. The purified enzyme shows high specificity towards the aromatic inducer substrate phenylacetate and uses ATP preferentially; Mn2+ can substitute for Mg2+. The apparent K m values for phenylacetate, CoA, and ATP are 60, 150, and 290 M, respectively. The soluble enzyme has an optimum pH of 8.5, is insensitive to oxygen, but is rather labile and requires the presence of glycerol and/or phenylacetate for stabilization. The N-terminal amino acid sequence showed no homology to other reported CoA-ligases. The expression of the enzye was studied by immunodetection. It is present in cells grown anaerobically with phenylacetate, but not with mandelate, phenylglyoxylate, benzoate; small amounts were detected in cells grown aerobically with phenylacetate.  相似文献   

17.
Summary Redox inactivation of glutathione reductase involves metal cations, since chelators protected against NADPH-inactivation, 3 µM EDTA or 10 µM DETAPAC yielding full protection. Ag+, Zn2+ and Cd2+ potentiated the redox inactivation promoted by NADPH alone, while Cr3+, Fe2+, Fe3+, Cu+, and Cu2+ protected the enzyme. The Zn2+ and Cd2+ effect was time-dependent, unlike conventional inhibition. Glutathione reductase interconversion did not require dioxygen, excluding participation of active oxygen species produced by NADPH and metal cations. One Zn2+ ion was required per enzyme subunit to yield full NADPH-inactivation, the enzyme being reactivated by EDTA. Redox inactivation of glutathione reductase could arise from the blocking of the dithiol formed at the active site of the reduced enzyme by metal cations, like Zn2+ or Cd2+.The glutathione reductase activity of yeast cell-free extracts was rapidly inactivated by low NADPH or moderate NADH concentrations; NADP+ also promoted rapid inactivation in fresh extracts, probably after reduction to NADPH. Full inactivation was obtained in cell-free extracts incubated with glucose-6-phosphate or 6-phosphogluconate; the inactivating efficiency of several oxidizable substrates was directly proportional to the specific activities of the corresponding dehydrogenases, confirming that redox inactivation derives from NADPH formed in vitro.Abbreviations DETAPAC diethylenetriaminepentaacetic acid - 2,5-ADP-Sepharose-N6-(6-aminohexyl) adenosine 2,5-bisphosphateSepharose  相似文献   

18.
α-D-Xylosidase II activity from Aspergillus flavus MO-5 was increased roughly 5- to 10-fold by use of xylose instead of methyl α-D-xylopyranoside (α-MX) as a carbon source.

The enzyme was purified to an electrophoretically pure state by successive chromatography on Q-Sepharose, Phenyl Superose, PL-SAX, and TSK-gel G3000SWXL. The purified enzyme hydrolyzed isoprimeverose [α-D-xylopyranosyl-(1→6)-D-glucopyranose] and p-nitrophenyl α-D-xylopyranoside (α-p-NPX), but not α-MX or xyloglucan oligosaccharide. The apparent Km and Vmax of the enzyme for α-p-NPX and isoprimeverose were 0.97 mM and 28.0 µmol/min/mg protein, and 47.62 mM and 2.0 µmol/min/mg protein, respectively. This enzyme had an apparent molecular weight of 67,000 by SDS-polyacrylamide gel electrophoresis and 180,000 by gel filtration chromatography (TSK-gel G3000SWXL).

The enzyme showed the highest activity at pH 6.0 and 40°C, and was stable in the pH range from 6.0 to 7.0 and at the temperatures up to 40°C. The activity was inhibited by Cu2+, Zn2+, Hg2+, p-CMB, SDS, Fe3+, and N-ethylmaleimide.

This enzyme had nothing in common with α-D-xylosidase I and four α-D-xylosidases reported already.  相似文献   

19.
An inducible sulfite reductase was purified from Clostridium pasteurianum. The pH optimum of the enzyme is 7.5 in phosphate buffer. The molecular weight of the reductase was determined to be 83,600 from sodium dodecyl sulfate gel electrophoresis with a proposed molecular structure: 22. Its absorption spectrum showed a maximum at 275 nm, a broad shoulder at 370 nm and a very small absorption maximum at 585 nm. No siroheme chromophore was isolated from this reductase. The enzyme could reduced the following substrates in preferential order: NH2OH> SeO 3 2- >NO 2 2- at rates 50% or less of its preferred substrate SO 3 2- . The proposed dissimilatory intermediates, S3O 6 2- or S2O 3 2- , were not utilized by this reductase while KCN inhibited its activity. Varying the substrate concentration [SO 3 2- ] from 1 to 2.5 mol affected the stoichiometry of the enzyme reaction by alteration of the ratio of H2 uptake to S2- formed from 2.5:1 to 3.1:1. The inducible sulfite reductase was found to be linked to ferredoxin which could be completely replaced by methyl viologen or partially by benzyl viologen. Some of the above-mentioned enzyme properties and physiological considerations indicated that it was a dissimilatory type sulfite reductase.Abbreviations SDS sodium dodecyl sulfate - BSA bovine serum albumin - LDH Lactate dehydrogenase  相似文献   

20.
Trigonelline (TRG), which act as a cell cycle regulator and a compatible solute in response to salinity and water-stress, is the N-methyl conjugate of nicotinic acid the formation of which is catalyzed by S-adenosyl-L-methionine nicotinic acid-N-methyltransferase. The enzyme was purified 2650-fold from soybean (Glycine max L.) leaves with a recovery of 4 %. The purification procedure included ammonium sulfate (45 – 60 %) precipitation, linear gradient DEAE-Sepharose chromatography, adenosine-agarose affinity chromatography, hydroxyapatite chromatography and gel filtration (Sephacryl-S-200). The purified enzyme preparation showed a major band with a molecular mass of 41.5 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis that is related to the enzyme activity. The native enzyme had a molecular mass of about 85 kDa as estimated by gel filtration. The Km values for S-adenosyl-L-methionine and nicotinic acid were 31 and 12.5 M, respectively. The purified enzyme showed optimum activity at pH 6.5 and temperature of 40 – 45 °C. High concentration of dithiothreitol (10 mM) and glycerol (20 %) stabilize the enzyme during purification and storage. Hg2+ strongly inhibits enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号