首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ca2+在植物生长发育和环境适应过程中发挥着中心调控作用,钙信号是植物生长发育和逆境响应的主要调控因子,钙结合蛋白是植物钙信号传导途径的最重要组分之一,然而植物钙结合蛋白在体内和体外与Ca2+结合的技术体系还有待完善和发展。为了系统总结植物钙结合蛋白的鉴定方法与技术,本文从定性结合、定量结合和结合方式等角度,综述了植物钙结合蛋白在体内和体外条件下与Ca2+结合的原理、方法、特点和应用前景,详细阐述了近年来的主要检测方法,并对其今后的发展趋势作了展望。本文将为植物钙结合蛋白的分离、功能鉴定和作用机制的研究提供技术支撑。  相似文献   

2.
Representative species of four bivalve subclasses were examined for the presence of mineral-binding phosphoprotein particles in the physiological fluids. The particles were identified in Heterodont bivalves only, and particles from nine different Heterodont species were isolated and characterized. All phosphoprotein particles are internally cross-linked via histidinoalanine residues. In all species over 80% of the amino acid residues in the particles are aspartic acid, phosphoserine (and/or phosphothreonine), and histidine. These amino acids are probably the only residues directly related to mineral ion binding, since all phosphoprotein particles bind mineral irrespective of the minor amino acid content, which is species dependent. In their native state the phosphoprotein particles contain large amounts of calcium, magnesium, and inorganic phosphate ions (up to 45 metal ions and 8 phosphate ions per 100 amino acid residues) and trace amounts of transition elements. Evidence for the presence of calcium phosphate complexes in the native phosphoprotein particles was obtained by observing a concomitant increase in the inorganic phosphate and calcium ion content of the particles with pH in vivo.  相似文献   

3.
The innermost shell lamella, which coats the inner surface of the shells in the estuarine clam Rangia cuneata, is a dynamic structure with a variable composition. In some populations the lamella is a phosphoprotein-rich structure devoid of crystalline mineral, and in others it is a glucosamine-rich structure often containing barite (BaSO4) inclusions. Mineral depositions was artificially stimulated in Rangia containing glucosamine-rich lamellae by scratching the inner shell surface. After stimulation, the lamellae were transformed into phosphoprotein-rich structures in which aragonite (CaCO3) was deposited. The mineral grew in spherulitic and dumbbell-shaped clusters characteristic of aragonite precipitated from strictly inorganic solutions. This study demonstrates that phosphoprotein particles accumulate in the innermost shell lamella during stimulated biomineralization but neither inhibit mineral deposition nor influence the crystal habits. Since phosphoprotein particles are high capacity calcium-binding proteins, they may be the source and transport vehicle for the calcium ions utilized in shell mineralization.  相似文献   

4.
Calcium-binding phosphoprotein particles are the most abundant extracellular proteins in the hemolymph of heterodont bivalves, and granular hemocytes are the most abundant cells in the same fluid. In this study, the hemocytes of Rangia cuneata were examined ultrastructurally and probed with anti-phosphoprotein IgG to demonstrate that the granulocytes are a probable source of the hemolymph phosphoprotein. The granulocyte cytoplasm is laden with large vesicles containing an amorphous homogenous matrix and variable numbers of electron-dense particles; the latter are ultrastructurally similar to the extracellular phosphoprotein. The vesicle particles and matrix are related forms of the hemolymph phosphoprotein as evidenced by heavy gold labeling when Lowicryl sections were sequentially treated with rabbit-anti-phosphoprotein IgG and colloidal gold-anti-rabbit IgG. The vesicles may be the loci for posttranslational phosphorylation and eventual secretion of the calcium-binding phosphoprotein, or alternatively the vesicles may be digestive structures which degrade internalized phosphoprotein.  相似文献   

5.
Calcium ions mediate cellular activity by binding to specific cellular proteins. The following study systematically examines the cellular complement of calcium-binding proteins in different cell fractions and life cycle stages of Trypanosoma brucei. Using a 45Ca-gel overlay procedure, eight calcium-binding proteins were consistently observed. The majority of proteins were cytosolic (84, 70, 64, 22, and 15 kd) while the remainder (55, 46, and 29 kd) were particulate. Although calmodulin was detected amongst the calcium-binding proteins, it did not represent the majority of calcium-binding activity. Of special interest was the 46 kd calcium-binding protein which was associated with 3-fold more calcium in cultured procyclic forms than in slender bloodstream forms. By contrast, promastigote forms of Leishmania mexicana did not contain the 46 kd calcium-binding protein. These data suggest that responsiveness to calcium signals may vary during the trypanosome life cycle as a result of changes in the cellular complement of calcium-binding proteins.  相似文献   

6.
We determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold-adapted serine protease produced by Antarctic bacilli, at 1.4 A resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 A resolution. The purpose of this comparison was to find out whether multiple calcium ion binding is a molecular factor responsible for the adaptation of S41 to extreme low temperatures. We find that these two subtilisins have the same subtilisin fold with a root mean square between the two structures of 0.54 A. The final models for S41 and Sph include a calcium-loaded state of five ions bound to each of these two subtilisin molecules. None of these calcium-binding sites correlate with the high affinity known binding site (site A) found for other subtilisins. Structural analysis of the five calcium-binding sites found in these two crystal structures indicate that three of the binding sites have two side chains of an acidic residue coordinating the calcium ion, whereas the other two binding sites have either a main-chain carbonyl, or only one acidic residue side chain coordinating the calcium ion. Thus, we conclude that three of the sites are of high affinity toward calcium ions, whereas the other two are of low affinity. Because Sph is a mesophilic subtilisin and S41 is a psychrophilic subtilisin, but both crystal structures were found to bind five calcium ions, we suggest that multiple calcium ion binding is not responsible for the adaptation of S41 to low temperatures.  相似文献   

7.
Calcium ions mediate cellular activity by binding to specific cellular proteins. The following study systematically examines the cellular complement of calcium-binding proteins in different cell fractions and life cycle stages of Trypanosoma brucei. Using a 45Ca-gel overlay procedure, eight calcium-binding proteins were consistently observed. The majority of proteins were cytosolic (84, 70, 64, 22, and 15 kd) while the remainder (55, 46, and 29 kd) were particulate. Although calmodulin was detected amongst the calcium-binding proteins, it did not represent the majority of calcium-binding activity. Of special interest was the 46 kd calcium-binding protein which was associated with 3-fold more calcium in cultured procyclic forms than in slender bloodstream forms. By contrast, promastigote forms of Leishmania mexicana did not contain the 46 kd calcium-binding protein. These data suggest that responsiveness to calcium signals may vary during the trypanosome life cycle as a result of changes in the cellular complement of calcium-binding proteins.  相似文献   

8.
A calcium-binding phosphoprotein previously found only in brain and adrenal medulla has been isolated from the adult bovine testis. The testicular protein is electrophoretically indistinguishable from the protein of adult bovine brain and adrenal medulla in 15% polyacrylamide gels at pH 8.3 and 4.7. Crude homogenates and acidic protein fractions of adult testis, fetal testis and epididymal spermatozoa were examined electrophoretically for the presence of this calcium-binding protein. The protein was present in homogenates of adult testis and epididymal spermatozoa but only to limited extent in the homogenate of fetal testis. It was the major acidic protein of spermatozoa. It appears likely that the calcium-binding protein evident in adult testicular tissue is contributed largely by the developing spermatozoa.  相似文献   

9.
A protein which showed high affinity for calcium ions was isolated from bull seminal vesicle secretion and seminal plasma. Its calcium-binding activity depended on the ionic strength and pH of the medium. The dissociation constant was 7-7 X 10(-7) M and there were 14 binding sites per protein molecule. The molecular weight of calcium-binding protein from bull seminal vesicle secretion, estimated by the gel filtration method, was 110,000. The protein may be involved in the regulation of the calcium ion level in seminal plasma.  相似文献   

10.
A Zell  H Einspahr  C E Bugg 《Biochemistry》1985,24(2):533-537
The crystal structure of a Ca2+ salt of alpha-ethylmalonic acid was determined from three-dimensional X-ray diffraction data. The dicarboxylate anion represents the functional side chain of gamma-carboxyglutamic acid (Gla) residues, which are implicated as essential calcium-binding ligands in a variety of proteins. The alpha-ethylmalonate ion chelates the Ca2+ ion in a bidentate manner that involves an O atom from each of the two malonate carboxylate groups. This type of binding arises from the constrained arrangement of carboxylate ligands in the malonate group and may be of significance to the calcium-binding properties of Gla-containing sites in proteins. The Ca2+-malonate chelation forms a six-membered ring, which is stabilized by interactions that are consistent with the preferred stereochemistries of both calcium-carboxylate and metal-malonate complexes. No other interactions are observed between Ca2+ ions and alpha-ethylmalonate ions that depend upon the malonate juxtaposition of two carboxylate groups. The potential for this type of binding distinguishes Gla residues from the monocarboxylate residues, aspartate and glutamate, and confers a novel calcium-chelation ability upon Gla-containing sites in proteins.  相似文献   

11.
Cytosolic phospholipase A2 (cPLA2) plays a key role in the generation of arachidonic acid, a precursor of potent inflammatory mediators. Intact cPLA2 is known to translocate in a calcium-dependent manner from the cytosol to the nuclear envelope and endoplasmic reticulum. We show here that the C2 domain of cPLA2 alone is sufficient for this calcium-dependent translocation in living cells. We have identified sets of exposed hydrophobic residues in loops known as calcium-binding region (CBR) 1 and CBR3, which surround the C2 domain calcium-binding sites, whose mutation dramatically decreased phospholipid binding in vitro without significantly affecting calcium binding. Mutation of a residue that binds calcium ions (D43N) also eliminated phospholipid binding. The same mutations that prevent phospholipid binding of the isolated C2 domain in vitro abolished the calcium-dependent translocation of cPLA2 to internal membranes in vivo, suggesting that the membrane targeting is driven largely by direct interactions with the phospholipid bilayer. Using fluorescence quenching by spin-labeled phospholipids for a series of mutants containing a single tryptophan residue at various positions in the cPLA2 C2 domain, we show that two of the calcium-binding loops, CBR1 and CBR3, penetrate in a calcium-dependent manner into the hydrophobic core of the phospholipid bilayer, establishing an anchor for docking the domain onto the membrane.  相似文献   

12.
To understand the key determinants in calcium-binding affinity, a calcium-binding site with pentagonal bipyramid geometry was designed into a non-calcium-binding protein, domain 1 of CD2. This metal-binding protein has five mutations with a net charge in the coordination sphere of -5 and is termed DEEEE. Fluorescence resonance energy transfer was used to determine the metal-binding affinity of DEEEE to the calcium analog terbium. The addition of protein concentration to Tb(III) solution results in a large enhancement of Tb(III) fluorescence due to energy transfer between terbium ions and aromatic residues in CD2-D1. In addition, both calcium and lanthanum compete with terbium for the same desired metal binding pocket. Our designed protein exhibits a stronger affinity for Tb(III), with a K(d) of 21 microM, than natural calcium-binding proteins with a similar Greek key scaffold.  相似文献   

13.
Synaptic vesicle protein 2 (SV2) is a component of all synaptic vesicles that is required for normal neurotransmission. Here we report that in intact synaptic terminals SV2 is a phosphoprotein. Phosphopeptide mapping studies indicate that a major site of phosphorylation is located on the cytoplasmic amino terminus. SV2 is phosphorylated on serine and threonine but not on tyrosine residues, indicating that it is a substrate for serine/threonine kinases. Phosphopeptide mapping, in gel kinase assays, and surveys of kinase inhibitors suggest that casein kinase I is a primary SV2 kinase. The amino terminus of SV2 was previously shown to mediate its interaction with synaptotagmin, a calcium-binding protein also required for normal neurotransmission. Comparison of synaptotagmin binding with phosphorylated and unphosphorylated SV2 amino-terminal peptides reveals an increase in binding with phosphorylation. These results suggest that the affinity of SV2 for synaptotagmin is modulated by phosphorylation of SV2.  相似文献   

14.
X-ray diffraction data were used to determine the crystal structure of a calcium chloride complex of geraniol. The geraniol molecules assume a bilayer arrangement, with channels of calcium and chloride ions separating the bilayers. Each calcium ion is coordinated to the hydroxyl groups of two symmetry-related geraniol molecules and to four chloride ions. Our results demonstrate that hydrophobic interactions within a lipid bilayer can lead to an arrangement of hydroxyl groups suitable for binding calcium ions. Similar interactions may be involved in the calcium-binding sites on membrane surfaces.  相似文献   

15.
The structure of bovine intestinal calcium-binding protein (ICaBP) has been determined crystallographically at a resolution of 2.3 A and refined by a least squares technique to an R factor of 17.8%. The refined structure includes all 600 non-hydrogen protein atoms, two bound calcium ions, and solvent consisting of one sulfate ion and 36 water molecules. The molecule consists of two helix-loop-helix calcium-binding domains known as EF hands, connected by a linker containing a single turn of helix. Helix-helix interactions are primarily hydrophobic, but also include a few strategic hydrogen bonds. Most of the hydrogen bonds, however, are found in the calcium-binding loops, where they occur both within a single loop and between the two. Examination of the hydrogen bonding patterns in the calcium-binding loops of ICaBP and the related protein, parvalbumin, reveals several conserved hydrogen bonds which are evidently important for loop stabilization. The primary and tertiary structural features which promote the formation of an EF hand were originally identified from the structure of parvalbumin. They are modified in light of the ICaBP structure and considered as they apply to other calcium-binding proteins. The C-terminal domain of ICaBP is a normal EF hand, with ion binding properties similar to those of the calmodulin hands, but the N-terminal domain is a variant hand whose calcium ligands are mostly peptide carbonyls. Relative to a normal EF hand, this domain exhibits a similar KD for calcium binding but a greatly reduced affinity for calcium analogs such as cadmium and the lanthanide series. Lanthanides in particular may be inappropriate models for calcium in this system.  相似文献   

16.
The crystal structure of a fucose-binding lectin from the bacteria Pseudomonas aeruginosa in complex with α-L-fucose has been recently determined. It is a tetramer; each monomer displays a nine-stranded, antiparallel, β-sandwiched arrangement and contains two calcium ions that mediate the binding of fucose in a recognition mode unique among protein-carbohydrate interactions. In search of this type of unique interactions in other newly discovered protein sequences, we have used molecular modeling techniques to predict and analyze the 3-D structures of some proteins, which exhibited reasonable degree of homology with the amino acid sequence of the bacterial protein. A BLAST search with the sequence of Pseudomonas aeruginosa as query in the non-redundant sequence database identified four proteins from different species, three organisms from bacteria and one from archaea. We have modeled the structures of these proteins as well as those of the complexes with carbohydrates and studied the nature of physicochemical forces involved in the complex formation both in presence and absence of calcium. The calcium-binding loops have been found to be highly conserved both in terms of primary and tertiary structures in these proteins, although a less acidic character is observed in Photorhabdus lectin due to the absence of two aspartic acid residues on the calcium-binding loop which also resulted in lower binding affinity. All these structures exhibited highly negative electrostatic environment in the vicinity of the calcium-binding loops which was essential for neutralizing the positive charges of two closely situated Ca+2 ions. The comparison of the binding affinities of some monosaccharides other than fucose, e.g. mannose and fructose, showed higher binding energies confirming the fucose specificity of these proteins.  相似文献   

17.
Whole casein, αs-casein and k-casein were dephosphorylated with a phosphoprotein phosphatase prepared from beef spleen and their calcium-binding capacities were compared with those of respective native caseins by a ultracentrifugal method.

The bindings of the calcium to 94% dephosphorylated whole casein and to 97 % dephosphorylated αs-casein at neutral pH were approximately one third of those to respective native caseins. The decrease of calcium-binding capacity of k-casein due to dephosphorylation was also significant.

The effect of pH on the state and the calcium-binding capacity of dephosphorylated caseins was also examined and the role of organic phosphate groups of casein as calcium-binding sites was discussed.  相似文献   

18.
We have studied the calcium-binding properties of two high affinity calcium-binding proteins from squid optic lobes: one, squid calmodulin (SCaM), similar to bovine brain calmodulin (BCaM), the other, squid calcium-binding protein (SCaBP), distinct (Head, J.F., Spielberg, S., and Kaminer, B. (1983) Biochem J. 209, 797-802). Equilibrium dialysis measurements on the squid proteins (and BCaM) were made at 100 mM KCl in the presence and absence of 3 mM Mg2+, and at 400 mM KCl in the presence of 3 mM Mg2+, which more closely resembles the conditions in the squid. SCaM, SCaBP, and BCaM each bind a maximum of 4 Ca2+ ions/molecule of protein under the ionic conditions tested. SCaBP has a higher affinity than SCaM or BCaM for Ca2+ at 100 mM KCl in the absence of Mg2+. However, in the presence of Mg2+, half-maximal binding to SCaBP occurs at a similar pCa value to that observed with calmodulin. Increasing the KCl concentration reduces the affinity of all three proteins for Ca2+. UV absorption measurements showed that the binding of 4 Ca2+ ions/molecule is necessary to complete spectral changes in SCaBP, compared to two for the calmodulins. While Ca2+ causes perturbations in aromatic chromophores in SCaM and SCaBP, Mg2+ causes a significant perturbation only in SCaBP. These Mg2+-induced changes differ qualitatively from those induced by Ca2+.  相似文献   

19.
To establish an approach to obtain the site-specific calcium binding affinity of EF-hand proteins, we have successfully designed a series of model proteins, each containing the EF-hand calcium-binding loop 3 of calmodulin, but with increasing numbers of Gly residues linking the loop to domain 1 of CD2. Structural analyses, using different spectroscopic methods, have shown that the host protein is able to retain its native structure after insertion of the 12-residue calcium-binding loop and retains a native thermal stability and thermal unfolding behavior. In addition, calcium binding to the engineered CD2 variants does not result in a significant change from native CD2 conformation. The CD2 variant with two Gly linkers has been shown to have the strongest metal binding affinity to Ca(II) and La(III). These experimental results are consistent with our molecular modeling studies, which suggest that this protein with the engineered EF-loop has a calmodulin-like calcium binding geometry and backbone conformation. The addition of two Gly linkers increases the flexibility of the inserted EF-loop 3 from calmodulin, which is essential for the proper binding of metal ions.  相似文献   

20.
ABSTRACT The amino acid composition and hydrophobicity scale (hydropathy) of calcium-binding proteins contained in the contractile spasmoneme of Carchesium polypinum was compared with other calcium-binding proteins from eukaryotes. Spasmins which may hind at most 4 calcium ions simultaneously and initiate spasmoneme contraction cooperatively belong to a super family of proteins including; centrin/caltractin and calmodulin. Based on chemical modification of tryptophan and methionine, these residues are involved in contraction but the spasmin proteins contain little or none of these amino acids. Based on this evidence, it is suggested that another, non-calcium binding protein(s) is involved in spasmoneme contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号