首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-Linked Adrenoleukodystrophy: Genes,Mutations, and Phenotypes   总被引:12,自引:0,他引:12  
X-linked adrenoleukodystrophy (X-ALD) is a complex and perplexing neurodegenerative disorder. The metabolic abnormality, elevated levels of very long-chain fatty acids in tissues and plasma, and the biochemical defect, reduced peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity, are ubiquitous features of the disease. However, clinical manifestations are highly variable with regard to time of onset, site of initial pathology and rate of progression. In addition, the abnormal gene in X-ALD is not the gene for VLCS. Rather, it encodes a peroxisomal membrane protein with homology to the ATP-binding cassette (ABC) transmembrane transporter superfamily of proteins. The X-ALD protein (ALDP) is closely related to three other peroxisomal membrane ABC proteins. In this report we summarize all known X-ALD mutations and establish the lack of an X-ALD genotype/phenotype correlation. We compare the evolutionary relationships among peroxisomal ABC proteins, demonstrate that ALDP forms homodimers with itself and heterodimers with other peroxisomal ABC proteins and present cDNA complementation studies suggesting that the peroxisomal ABC proteins have overlapping functions. We also establish that there are at least two peroxisomal VLCS activities, one that is ALDP dependent and one that is ALDP independent. Finally, we discuss variable expression of the peroxisomal ABC proteins and ALDP independent VLCS in relation to the variable clinical presentations of X-ALD.  相似文献   

2.
The 70-kDa peroxisomal membrane protein (PMP70) and the adrenoleukodystrophy protein (ALDP) are half ATP binding cassette (ABC) transporters in the peroxisome membrane. Mutations in the ALD gene encoding ALDP result in the X-linked neurodegenerative disorder adrenoleukodystrophy. Plausible models exist to show a role for ATP hydrolysis in peroxisomal ABC transporter functions. Here, we describe the first measurements of the rate of ATP binding and hydrolysis by purified nucleotide binding fold (NBF) fusion proteins of PMP70 and ALDP. Both proteins act as an ATP specific binding subunit releasing ADP after ATP hydrolysis; they did not exhibit GTPase activity. Mutations in conserved residues of the nucleotidases (PMP70: G478R, S572I; ALDP: G512S, S606L) altered ATPase activity. Furthermore, our results indicate that these mutations do not influence homodimerization or heterodimerization of ALDP or PMP70. The study provides evidence that peroxisomal ABC transporters utilize ATP to become a functional transporter.  相似文献   

3.
Mammalian peroxisomal proteins adrenoleukodystrophy protein (ALDP), adrenoleukodystrophy-related protein (ALDRP), and 70-kDa peroxisomal protein (PMP70) belong to the superfamily of ATP-binding cassette (ABC) transporters. Unlike many ABC transporters that are single functional proteins with two related halves, ALDP, ALDRP, and PMP70 have the structure of ABC half-transporters. The dysfunction of ALDP is responsible for X-linked adrenoleukodystrophy (X-ALD), a neurodegenerative disorder in which saturated very long-chain fatty acids accumulate because of their impaired peroxisomal beta-oxidation. No disease has so far been associated with mutations of adrenoleukodystrophy-related or PMP70 genes. It has been proposed that peroxisomal ABC transporters need to dimerize to exert import functions. Using the yeast two-hybrid system, we show that homo- as well as heterodimerization occur between the carboxyl-terminal halves of ALDP, ALDRP, and PMP70. Two X-ALD disease mutations located in the carboxyl-terminal half of ALDP affect both homo- and heterodimerization of ALDP. Co-immunoprecipitation demonstrated the homodimerization of ALDP, the heterodimerization of ALDP with PMP70 or ALDRP, and the heterodimerization of ALDRP with PMP70. These results provide the first evidence of both homo- and heterodimerization of mammalian ABC half-transporters and suggest that the loss of ALDP dimerization plays a role in X-ALD pathogenesis.  相似文献   

4.
ABC (ATP-binding cassette) subfamily D transporters are found in all eukaryotic kingdoms and are known to play essential roles in mammals and plants; however, their number, organization and physiological contexts differ. Via cross-kingdom expression experiments, we have explored the conservation of targeting, protein stability and function between mammalian and plant ABCD transporters. When expressed in tobacco epidermal cells, the mammalian ABCD proteins ALDP (adrenoleukodystrophy protein), ALDR (adrenoleukodystrophy-related protein) and PMP70 (70?kDa peroxisomal membrane protein) targeted faithfully to peroxisomes and P70R (PMP70-related protein) targeted to the ER (endoplasmic reticulum), as in the native host. The Arabidopsis thaliana peroxin AtPex19_1 interacted with human peroxisomal ABC transporters both in vivo and in vitro, providing an explanation for the fidelity of targeting. The fate of X-linked adrenoleukodystrophy disease-related mutants differed between fibroblasts and plant cells. In fibroblasts, levels of ALDP in some 'protein-absent' mutants were increased by low-temperature culture, in some cases restoring function. In contrast, all mutant ALDP proteins examined were stable and correctly targeted in plant cells, regardless of their fate in fibroblasts. ALDR complemented the seed germination defect of the Arabidopsis cts-1 mutant which lacks the peroxisomal ABCD transporter CTS (Comatose), but neither ALDR nor ALDP was able to rescue the defect in fatty acid β-oxidation in establishing seedlings. Taken together, our results indicate that the mechanism for trafficking of peroxisomal membrane proteins is shared between plants and mammals, but suggest differences in the sensing and turnover of mutant ABC transporter proteins and differences in substrate specificity and/or function.  相似文献   

5.
The Arabidopsis ABC transporter Comatose (CTS; AtABCD1) is required for uptake into the peroxisome of a wide range of substrates for β-oxidation, but it is uncertain whether CTS itself is the transporter or if the transported substrates are free acids or CoA esters. To establish a system for its biochemical analysis, CTS was expressed in Saccharomyces cerevisiae. The plant protein was correctly targeted to yeast peroxisomes, was assembled into the membrane with its nucleotide binding domains in the cytosol, and exhibited basal ATPase activity that was sensitive to aluminum fluoride and abrogated by mutation of a conserved Walker A motif lysine residue. The yeast pxa1 pxa2Δ mutant lacks the homologous peroxisomal ABC transporter and is unable to grow on oleic acid. Consistent with its exhibiting a function in yeast akin to that in the plant, CTS rescued the oleate growth phenotype of the pxa1 pxa2Δ mutant, and restored β-oxidation of fatty acids with a range of chain lengths and varying degrees of desaturation. When expressed in yeast peroxisomal membranes, the basal ATPase activity of CTS could be stimulated by fatty acyl-CoAs but not by fatty acids. The implications of these findings for the function and substrate specificity of CTS are discussed.  相似文献   

6.

Background

The peroxisome is a single membrane-bound organelle in eukaryotic cells involved in lipid metabolism, including β-oxidation of fatty acids. The human genetic disorder X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene (encoding ALDP, a peroxisomal half ATP-binding cassette [ABC] transporter). This disease is characterized by defective peroxisomal β-oxidation and a large accumulation of very long-chain fatty acids in brain white matter, adrenal cortex, and testis. ALDP forms a homodimer proposed to be the functional transporter, whereas the peroxisomal transporter in yeast is a heterodimer comprising two half ABC transporters, Pxa1p and Pxa2p, both orthologs of human ALDP. While the carboxyl-terminal domain of ALDP is engaged in dimerization, it remains unknown whether the same region is involved in the interaction between Pxa1p and Pxa2p.

Methods/Principal Findings

Using a yeast two-hybrid assay, we found that the carboxyl-terminal region (CT) of Pxa2p, but not of Pxa1p, is required for their interaction. Further analysis indicated that the central part of the CT (designated CT2) of Pxa2p was indispensable for its interaction with the carboxyl terminally truncated Pxa1_NBD. An interaction between the CT of Pxa2p and Pxa1_NBD was not detected, but could be identified in the presence of Pxa2_NBD-CT1. A single mutation of two conserved residues (aligned with X-ALD-associated mutations at the same positions in ALDP) in the CT2 of the Pxa2_NBD-CT protein impaired its interaction with Pxa1_NBD or Pxa1_NBD-CT, resulting in a mutant protein that exhibited a proteinase K digestion profile different from that of the wild-type protein. Functional analysis of these mutant proteins on oleate plates indicated that they were defective in transporter function.

Conclusions/Significance

The CT of Pxa2p is involved in its interaction with Pxa1p and in transporter function. This concept may be applied to human ALDP studies, helping to establish the pathological mechanism for CT-related X-ALD disease.  相似文献   

7.
《FEMS yeast research》2005,5(1):63-72
In order to ascertain the molecular basis of ATP-mediated drug extrusion by Cdr1p, a multidrug transporter of Candida albicans, we recently have reported that the Walker A motif of the N-terminal nucleotide biding domain (NBD) of this protein contains an uncommon cysteine residue (C193; GXXGXGCS/T) which is indispensable for ATP hydrolysis. This residue is exceptionally conserved in N-terminal NBDs of fungal ABC transporters and hence makes these transporters an evolutionarily divergent group. However, the presence of a conventional lysine residue at a similar position in the Walker A motif of the C-terminal NBD warrants the individual contribution of both the NBDs in the ATP-driven efflux function of such transporters. In this study we have investigated the contribution of this divergent Walker A motif in the context of the full Cdr1p protein under in vivo conditions by swapping these two crucial amino acids (C193K in Walker A motif of N-terminal NBD and K901C in Walker A motif of C-terminal NBD) between the two NBDs. Both the native and the mutant variants of Cdr1p were integrated at the PDR5 locus as GFP-tagged fusion proteins and were hyper-expressed. Our study shows that both C193K- and K901C-expressing cells elicit a severe impairment of Cdr1p’s ATPase function. However, both these mutations have distinct phenotypes with respect to other functional parameters such as substrate efflux and drug resistance profiles. In contrast to C193K, K901C mutant cells were substantially hypersensitive to the tested drugs (fluconazole, ansiomycin, miconazole and cycloheximide) and were unable to expel rhodamine 6G. Our results for the first time show that both NBDs influence the Cdr1p function asymmetrically, and that the positioning of the cysteine and lysine residues within the respective Walker A motifs is functionally not interchangeable.  相似文献   

8.
Four ABC half transporters (ALDP, ALDRP, PMP70, and PMP69) have been identified in the mammalian peroxisomal membrane but no function has been unambiguously assigned to any of them. To date X-linked adrenoleukodystrophy (X-ALD) is the only human disease known to result from a defect of one of these ABC transporters, ALDP. Using the yeast two-hybrid system and in vitro GST pull-down assays, we identified the peroxin PEX19p as a novel interactor of ALDP, ALDRP, and PMP70. The cytosolic farnesylated protein PEX19p was previously shown to be involved in an early step of the peroxisomal biogenesis. The PEX19p interaction occurs in an internal N-terminal region of ALDP which we verified to be important for proper peroxisomal targeting of this protein. Farnesylated wild-type PEX19p and a farnesylation-deficient mutant PEX19p did not differ in their ability to bind to ALDP. Our data provide evidence that PEX19p is a cytosolic acceptor protein for the peroxisomal ABC transporters ALDP, PMP70, and ALDRP and might be involved in the intracellular sorting and trafficking of these proteins to the peroxisomal membrane.  相似文献   

9.
The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half-ATP-binding cassette (ABC) transporters in the mammalian peroxisome membrane. Mutations in the gene encoding ALDP result in a devastating neurodegenerative disorder, X-linked adrenoleukodystrophy (X-ALD) that is associated with elevated levels of very long chain fatty acids because of impaired peroxisomal beta-oxidation. The interactions of peroxisomal ABC transporters, their role in the peroxisomal membrane, and their functions in disease pathogenesis are poorly understood. Studies on ABC transporters revealed that half-transporters have to dimerize to gain functionality. So far, conflicting observations are described for ALDP. By the use of in vitro methods (yeast two-hybrid and immunoprecipitation assays) on the one hand, it was shown that ALDP can form homodimers as well as heterodimers with PMP70 and ALDR, while on the other hand, it was demonstrated that ALDP and PMP70 exclusively homodimerize. To circumvent the problems of artificial interactions due to biochemical sample preparation in vitro, we investigated protein-protein interaction of ALDP in its physiological environment by FRET microscopy in intact living cells. The statistical relevance of FRET data was determined in two different ways using probability distribution shift analysis and Kolmogorov-Smirnov statistics. We demonstrate in vivo that ALDP and PMP70 form homodimers as well as ALDP/PMP70 heterodimers where ALDP homodimers predominate. Using C-terminal deletion constructs of ALDP, we demonstrate that the last 87 C-terminal amino acids harbor the most important protein domain mediating these interactions, and that the N-terminal transmembrane region of ALDP has an additional stabilization effect on ALDP homodimers. Loss of ALDP homo- or heterodimerization is highly relevant for understanding the disease mechanisms of X-ALD.  相似文献   

10.
The ATP binding cassette (ABC) proteins make up a large superfamily with members coming from all kingdoms. The functional form of the ABC protein nucleotide binding domain (NBD) is dimeric with ATP binding sites shared between subunits. The NBD is defined by six motifs: the Walker A, Q-loop, Signature, Walker-B, D-loop, and H-loop. The D-loop contains a conserved aspartate whose function is not clear but has been proposed to be involved in cross-talk between ATP binding sites. Structures of various ABC proteins suggest an interaction between the D-loop aspartate and an asparagine residue located in Walker A loop of the opposing subunit. Here, we evaluate the functional role of the D-loop using a bacteriophage T4 ABC protein, Rad50 (gp46). Mutation of either the D-loop aspartate or the Walker A asparagine results in dramatic reductions in ATP affinity, hydrolysis rate, and cooperativity. The mutant proteins bind Mre11 (gp47) and DNA normally, but no longer support the ATP-dependent nuclease activities of Mre11. We propose that the D-loop aspartate functions to stabilize the Walker A asparagine in a position favorable for catalysis. We find that the asparagine is crucially important to the mechanism of ATP hydrolysis by increasing the affinity for ATP and positioning the γ-phosphate of ATP for catalysis. Additionally, we propose that the asparagine acts as a γ-phosphate sensor and, through its interaction with the conserved D-loop aspartate, transmits conformational changes across the dimer interface to the second ATP binding site.  相似文献   

11.
X-连锁肾上腺 脑白质营养不良基因(ALD基因)编码的ALD蛋白(ALDP)是4种人类ABCD转运蛋白之一,为一种半ABC转运蛋白,既有ABC(ATP binding cassette)转运蛋白的共有特征,又有过氧化物酶体膜蛋白的特点. 其功能可能是将胞浆中极长链饱和脂肪酸(VLCFA)或其衍生物转运到过氧化物酶体内,并在其中进行β氧化. 已报道的ALD基因突变有900多个,其后果多种多样,但最终都使VLCFA或其衍生物无法进入过氧化物酶体,从而使VLCFA在体内蓄积. 作者认为,ALDP是研究ABCD转运蛋白,乃至所有ABC转运蛋白的一个极好模型.  相似文献   

12.
Fundamental to the metabolic sensor function of ATP-sensitive K(+) (K(ATP)) channels is the sulfonylurea receptor. This ATP-binding cassette protein, which contains nucleotide binding domains (NBD1 and NBD2) with conserved Walker motifs, regulates the ATP sensitivity of the pore-forming Kir6.2 subunit. Although NBD2 hydrolyzes ATP, a property essential in K(ATP) channel gating, the role of NBD1, which has limited catalytic activity, if at all, remains less understood. Here, we provide functional evidence that cooperative interaction, rather than the independent contribution of each NBD, is critical for K(ATP) channel regulation. Gating of cardiac K(ATP) channels by distinct conformations in the NBD2 ATPase cycle, induced by gamma-phosphate analogs, was disrupted by point mutation not only of the Walker motif in NBD2 but also in NBD1. Cooling membrane patches to decelerate the intrinsic ATPase activity counteracted ATP-induced K(ATP) channel inhibition, an effect that mimicked stabilization of the MgADP-bound posthydrolytic state at NBD2 by the gamma-phosphate analog orthovanadate. Temperature-induced channel activation was abolished by mutations that either prevent stabilization of MgADP at NBD2 or ATP at NBD1. These findings provide a paradigm of K(ATP) channel gating based on integration of both NBDs into a functional unit within the multimeric channel complex.  相似文献   

13.
14.
Rai V  Gaur M  Shukla S  Shukla S  Ambudkar SV  Komath SS  Prasad R 《Biochemistry》2006,45(49):14726-14739
The Walker A and B motifs of nucleotide binding domains (NBDs) of Cdr1p though almost identical to all ABC transporters, has unique substitutions. We have shown in the past that Trp326 of Walker B and Cys193 of Walker A motifs of N-terminal NBD of Cdr1p have distinct roles in ATP binding and hydrolysis, respectively. In the present study, we have examined the role of a well conserved Asp327 in the Walker B motif of the N-terminal NBD, which is preceded (Trp326) and followed (Asn328) by atypical amino acid substitutions and compared it with its equivalent well conserved Asp1026 of the C-terminal NBD of Cdr1p. We observed that the removal of the negative charge by D327N, D327A, D1026N, D1026A, and D327N/D1026N substitutions, resulted in Cdr1p mutant variants that were severely impaired in ATPase activity and drug efflux. Importantly, all of the mutant variants showed characteristics similar to those of the wild type with respect to cell surface expression and photoaffinity drug analogue [125I] IAAP and [3H] azidopine labeling. Although the Cdr1p D327N mutant variant showed comparable binding with [alpha-32P] 8-azido ATP, Cdr1p D1026N and Cdr1p D327N/D1026N mutant variants were crippled in nucleotide binding. That the two conserved carboxylate residues Asp327 and Asp1026 are functionally different was further evident from the pH profile of ATPase activity. The Cdr1p D327N mutant variant showed approximately 40% enhancement of its residual ATPase activity at acidic pH, whereas no such pH effect was seen with the Cdr1p D1026N mutant variant. Our experimental data suggest that Asp327 of N-terminal NBD has acquired a new role to act as a catalytic base in ATP hydrolysis, a role normally conserved for Glu present adjacent to the conserved Asp in the Walker B motif of all the non-fungal transporters.  相似文献   

15.
Bompadre SG  Hwang TC 《生理学报》2007,59(4):431-442
囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是一种Cl^-通道,属于ATP结合(ATP-binding cassette,ABC)转运体超家族。CFTR功能缺陷是高加索人种中普遍存在的致死性常染色体隐性遗传疾病囊性纤维化(cystic fibrosis,CF)发生的主要原因。这种疾病患者各组织上皮细胞内Cl^-转运失调。目前,与CF相关的不同突变超过1400种。CFTR调节(regulatory,R)域负责调控,核苷酸结合域(nucleotide-binding domains,NBDs)NBD1和NBD2负责ATP结合和水解门控。近期研究发现CFFR的NBDs与其它ABC蛋白一样可以二聚化。二聚化过程中,NBD1和NBD2首-尾相连,一个NBD上的WalkerA和B模块与另一个NBD提供的标签序列(signature sequence)形成ATP结合袋(ATP-binding pockets,ABPs)ABP1和ABP2。ABPs中与ATP结合相关的氨基酸突变实验揭示,ABP1和ABP2在CFTR的ATP依赖门控中发挥不同作用。ABP2由NBD2上的WalkA和B模块与NBD1提供的标签序列形成,它与ATP结合催化通道开放,而ABP1单独与ATP结合不能促进通道开放,只能稳定通道构象。有一些CFrR突变相关疾病的特征就是门控失调,进一步深入研究CFTR的NBD1和NBD2如何通过相互作用而达到通道门控,将为药理学研究提供更多所需的机制信息,有利于为CF治疗的药物设计铺平道路。  相似文献   

16.
Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the adenosine triphosphate (ATP) binding cassette (ABC) superfamily, is an ATP-gated chloride channel. Like other ABC proteins, CFTR encompasses two nucleotide binding domains (NBDs), NBD1 and NBD2, each accommodating an ATP binding site. It is generally accepted that CFTR’s opening–closing cycles, each completed within 1 s, are driven by rapid ATP binding and hydrolysis events in NBD2. Here, by recording CFTR currents in real time with a ligand exchange protocol, we demonstrated that during many of these gating cycles, NBD1 is constantly occupied by a stably bound ATP or 8-N3-ATP molecule for tens of seconds. We provided evidence that this tightly bound ATP or 8-N3-ATP also interacts with residues in the signature sequence of NBD2, a telltale sign for an event occurring at the NBD1–NBD2 interface. The open state of CFTR has been shown to represent a two-ATP–bound NBD dimer. Our results indicate that upon ATP hydrolysis in NBD2, the channel closes into a “partial NBD dimer” state where the NBD interface remains partially closed, preventing ATP dissociation from NBD1 but allowing the release of hydrolytic products and binding of the next ATP to occur in NBD2. Opening and closing of CFTR can then be coupled to the formation and “partial” separation of the NBD dimer. The tightly bound ATP molecule in NBD1 can occasionally dissociate from the partial dimer state, resulting in a nucleotide-free monomeric state of NBDs. Our data, together with other structural/functional studies of CFTR’s NBDs, suggest that this process is poorly reversible, implying that the channel in the partial dimer state or monomeric state enters the open state through different pathways. We therefore proposed a gating model for CFTR with two distinct cycles. The structural and functional significance of our results to other ABC proteins is discussed.  相似文献   

17.
Embryo dormancy in flowering plants is an important dispersal mechanism that promotes survival of the seed through time. The subsequent transition to germination is a critical control point regulating initiation of vegetative growth. Here we show that the Arabidopsis COMATOSE (CTS) locus is required for this transition, and acts, at least in part, by profoundly affecting the metabolism of stored lipids. CTS encodes a peroxisomal protein of the ATP binding cassette (ABC) transporter class with significant identity to the human X-linked adrenoleukodystrophy protein (ALDP). Like X-ALD patients, cts mutant embryos and seedlings exhibit pleiotropic phenotypes associated with perturbation in fatty acid metabolism. CTS expression transiently increases shortly after imbibition during germination, but not in imbibed dormant seeds, and genetic analyses show that CTS is negatively regulated by loci that promote embryo dormancy through multiple independent pathways. Our results demonstrate that CTS regulates transport of acyl CoAs into the peroxisome, and indicate that regulation of CTS function is a major control point for the switch between the opposing developmental programmes of dormancy and germination.  相似文献   

18.
Mouse liver PMP70 and ALDP: homomeric interactions prevail in vivo   总被引:3,自引:0,他引:3  
ALDP, ALDPR, PMP70 and PMP70R are half ATP-binding cassette (ABC) transporters of the mammalian peroxisomal membrane. By analogy with other members of this family, it is assumed that peroxisomal ABC transporters must dimerize to become functional units. However, not much is known regarding the type of dimers (i.e., homodimers and/or heterodimers) that are formed in vivo under normal expression conditions. In this work, we have characterized the quaternary structure of mouse liver PMP70 and ALDP. The PMP70 protein complex was purified to apparent homogeneity using a two-step purification protocol. The ALDP-containing protein complex was characterized by preparative immunoprecipitation experiments. In both cases, no evidence for the existence of heteromeric interactions or for the presence of accessory proteins in these ABC transporter protein complexes could be obtained. Our data indicate that the majority (if not all) of mouse liver PMP70 and ALDP are homomeric proteins.  相似文献   

19.
Multidrug Resistance Protein 1 (MRP1) transports diverse organic anionic conjugates and confers resistance to cytotoxic xenobiotics. The protein contains two nucleotide binding domains (NBDs) with features characteristic of members of the ATP-binding cassette superfamily and exhibits basal ATPase activity that can be stimulated by certain substrates. It is not known whether the two NBDs of MRP1 are functionally equivalent. To investigate this question, we have used a baculovirus dual expression vector encoding both halves of MRP1 to reconstitute an active transporter and have compared the ability of each NBD to be photoaffinity-labeled with 8-azido-[(32)P]ATP and to trap 8-azido-[(32)P]ADP in the presence of orthovanadate. We found that NBD1 was preferentially labeled with 8-azido-[(32)P]ATP, while trapping of 8-azido-[(32)P]ADP occurred predominantly at NBD2. Although trapping at NBD2 was dependent on co-expression of both halves of MRP1, binding of 8-azido-ATP by NBD1 remained detectable when the NH(2)-proximal half of MRP1 was expressed alone and when NBD1 was expressed as a soluble polypeptide. Mutation of the conserved Walker A lysine 684 or creation of an insertion mutation between Walker A and B motifs eliminated binding by NBD1 and all detectable trapping of 8-azido-ADP at NBD2. Both mutations decreased leukotriene C(4) (LTC(4)) transport by approximately 70%. Mutation of the NBD2 Walker A lysine 1333 eliminated trapping of 8-azido-ADP by NBD2 but, in contrast to the mutations in NBD1, essentially eliminated LTC(4) transport activity without affecting labeling of NBD1 with 8-azido-[(32)P]ATP.  相似文献   

20.
ATP-binding cassette (ABC) transporters play pivotal physiological roles in substrate transport across membranes, and defective assembly of these proteins can cause severe disease associated with improper drug or ion flux. The yeast protein Yor1p is a useful model to study the biogenesis of ABC transporters; deletion of a phenylalanine residue in the first nucleotide-binding domain (NBD1) causes misassembly and retention in the endoplasmic reticulum (ER) of the resulting protein Yor1p-ΔF670, similar to the predominant disease-causing allele in humans, CFTR-ΔF508. Here we describe two novel Yor1p mutants, G278R and I1084P, which fail to assemble and traffic similar to Yor1p-ΔF670. These mutations are located in the two intracellular loops (ICLs) that interface directly with NBD1, and thus disrupt a functionally important structural module. We isolated 2 second-site mutations, F270S and R1168M, which partially correct the folding injuries associated with the G278R, I1084P, and ΔF670 mutants and reinstate their trafficking. The position of both corrective mutations at the cytoplasmic face of a transmembrane helix suggests that they restore biogenesis by influencing the behavior of the transmembrane domains rather than by direct restoration of the ICL1-ICL4-NBD1 structural module. Given the conserved topology of many ABC transporters, our findings provide new understanding of functionally important inter-domain interactions and suggest new potential avenues for correcting folding defects caused by abrogation of those domain interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号