首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The protein misfolding cyclic amplification (PMCA) assay allows for detection of prion protein misfolding activity in tissues and fluids from sheep with scrapie where it was previously undetected by conventional western blot and immunohistochemistry assays. Studies of goats with scrapie have yet to take advantage of PMCA, which could aid in discerning the risk of transmission between goats and goats to sheep. The aim of the current study was to adapt PMCA for evaluation of scrapie derived from goats. Diluted brain homogenate from scrapie-infected goats (i.e., the scrapie seed, PrP(Sc)) was subjected to PMCA using normal brain homogenate from ovinized transgenic mice (tg338) as the source of normal cellular prion protein (the substrate, PrP(C)). The assay end-point was detection of the proteinase K-resistant misfolded prion protein core (PrP(res)) by western blot. Protein misfolding activity was consistently observed in caprine brain homogenate diluted 10,000-fold after 5 PMCA rounds. Epitope mapping by western blot analyses demonstrated that PrP(res) post-PMCA was readily detected with an N-terminus anti-PrP monoclonal antibody (P4), similar to scrapie inoculum from goats. This was in contrast to limited detection of PrP(res) with P4 following mouse bioassay. The inverse was observed with a monoclonal antibody to the C-terminus (F99/97.6.1). Thus, brain homogenate prepared from uninoculated tg338 served as an appropriate substrate for serial PMCA of PrP(Sc) derived from goats. These observations suggest that concurrent PMCA and bioassay with tg338 could improve characterization of goat derived scrapie.  相似文献   

2.
A protease-resistant protein is a structural component of the scrapie prion   总被引:67,自引:0,他引:67  
Fractions purified from scrapie-infected hamster brain contain a unique protein, designated PrP. It was labeled with N-succinimidyl 3-(4-hydroxy-5-[125I]-iodophenyl) propionate, which did not alter the titer of the scrapie prion. The concentration of PrP was found to be directly proportional to the titer of the infectious prion. Both PrP and prion infectivity were resistant for 2 hr at 37 degrees C to hydrolysis by proteinase K under nondenaturing conditions. Prolonging the digestion resulted in a concomitant decrease in both PrP and the scrapie prion. When the amino-acid-specific proteases trypsin or SV-8 protease were used instead of proteinase K, no change in either PrP or the prion was detected. The parallel changes between PrP and the prion provide evidence that PrP is a structural component of the infectious prion. Our findings also suggest that the prion contains only one major protein, namely PrP.  相似文献   

3.
Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.  相似文献   

4.
Summary An efficient Escherichia coli expression system for the production of mature-type alkaline serine protease II (mASP II) has been constructed. Complementary deoxyribonucleic acid-encoding mASP II was inserted into the inducible bacterial expression vector pGE-30. After introduction into E, coli, the plasmid was expressed by isopropyl-1-thio-β-d-galactopyranoside, and the recombinant product was purified using a Ni-nitrilotriacetic acid column The purified product had the expected NH2-terminal sequence and showed a scrapie isoform of prion protein-degrading activity using hamster scrapie 263K prions as a substrate.  相似文献   

5.
The prion protein (PrP) binds copper and under some conditions copper can facilitate its folding into a more protease resistant form. Hence, copper levels may influence the infectivity of the scrapie form of prion protein (PrPSc). To determine the feasibility of copper-targeted therapy for prion disease, we treated mice with a copper chelator, D-(-)-penicillamine (D-PEN), starting immediately following intraperitoneal scrapie inoculation. D-PEN delayed the onset of prion disease in the mice by about 11 days (p = 0.002), and reduced copper levels in brain by 29% (p < 0.01) and in blood by 22% (p = 0.03) compared with control animals. Levels of other metals were not significantly altered in the blood or brain. Modest correlation was observed between incubation period and levels of copper in brain (p = 0.08) or blood (p = 0.04), indicating that copper levels are only one of many factors that influence the rate of progression of prion disease. In vitro, copper dose-dependently enhanced the proteinase K resistance of the prion protein, and this effect was counteracted in a dose-dependent manner by co-incubation with D-PEN. Overall, these findings indicate that copper levels can influence the conformational state of PrP, thereby enhancing its infectivity, and this effect can be attenuated by chelator-based therapy.  相似文献   

6.
Scrapie prion infectivity can be enriched from hamster brain homogenates by using limited proteolysis and detergent extraction. Purified fractions contain both scrapie infectivity and the protein PrP 27-30, which is aggregated in the form of prion rods. During purification, PrP 27-30 is produced from a larger membrane protein, PrPSc, by limited proteolysis with proteinase K. Brain homogenates from scrapie-infected hamsters do not contain prion rods prior to exposure to detergents and proteases. To determine whether both detergent extraction and limited proteolysis are required for the formation of prion rods, microsomal membranes were prepared from infected brains in the presence of protease inhibitors. The isolated membranes were then detergent extracted as well as protease digested to evaluate the effects of these treatments on the formation of prion rods. Neither detergent (2% Sarkosyl) extraction nor limited proteinase K digestion of scrapie microsomes produced recognizable prion amyloid rods. Only after combining detergent extraction with limited proteolysis were numerous prion rods observed. Rod formation was influenced by the protease concentration, the specificity of the protease, and the duration of digestion. Rod formation also depended upon the detergent; some combinations of protease and detergent did not produce prion amyloid rods. Similar results were obtained with purified PrPSc fractions prepared by repeated detergent extractions in the presence of protease inhibitors. These fractions contained amorphous structures but not rods; however, prion rods were produced upon conversion of PrPSc to PrP 27-30 by limited proteolysis. We conclude that the formation of prion amyloid rods in vitro requires both detergent extraction and limited proteolysis. In vivo, amyloid filaments found in the brains of animals with scrapie resemble prion rods in their width and their labeling with prion protein (PrP) antisera; however, filaments are typically longer than rods. Whether limited proteolysis and some process equivalent to detergent extraction are required for amyloid filament formation in vivo remains to be established.  相似文献   

7.
Streptomyces septatus TH-2 secretes a large amount of a protease when cultured on a medium containing K(2)HPO(4) and glucose. The enzyme was purified to homogeneity by a three-step procedure. This enzyme had a molecular mass of approximately 35kDa, and was particularly inhibited by EDTA and phosphoramidon. Its substrate specificity was investigated using novel fluorescence energy transfer combinatorial libraries. The protease was found to prefer Phe and Tyr at the P(1) position, a hydrophobic or basic residue at the P(2) position, and a basic or small residue at the P(3) position. Its gene was cloned and sequenced, and its deduced amino acid sequence contained an HEXXH consensus sequence for zinc binding, confirming that it encodes metalloendopeptidase. The primary structure of the enzyme showed 40 and 69% identities with that of thermolysin from Bacillus thermoproteolyticus and that of a metalloendopeptidase from Streptomyces griseus, respectively.  相似文献   

8.
Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70°C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.  相似文献   

9.
Rarobacter faecitabidus protease I, a yeast-lytic serine protease, was characterized in order to elucidate the mechanism of lysis of yeast cells by this enzyme. The N-terminal amino acid sequence of the enzyme was found to be homologous to those of Lysobacter enzymogenes alpha-lytic protease and Streptomyces griseus proteases A and B around the catalytic His residue, showing that it is a mammalian type serine protease. In a study of its substrate specificity, it preferentially hydrolyzed the ester of alanine among amino acid p-nitrophenylesters. It also efficiently hydrolyzed succinyl Ala-Pro-Ala p-nitroanilide, the specific synthetic substrate for pancreatic elastase. With oxidized insulin B-chain, it hydrolyzed almost exclusively the peptide bond between valine 18 and cysteic acid 19 in the early step of the reaction, and thereafter it partially hydrolyzed Val12-Glu13, Ala14-Leu15, and Leu15-Tyr16. These results indicate that Rarobacter protease I is elastase-like in its substrate specificity, preferentially hydrolyzing the peptide bond of aliphatic amino acids. Its affinity for yeast cells was also investigated, and while Rarobacter protease I was adsorbed by yeast cells, pancreatic elastase was not. This difference was thought to account for the failure of pancreatic elastase to lyse yeast cells, even though its specificity is similar to that of the yeast-lytic enzyme. Rarobacter protease I was adsorbed by a mannose-agarose column and specifically eluted from the column with a buffer containing D-mannose or D-glucose. These monosaccharides also inhibited its yeast-lytic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
The scrapie prion protein (PrPSc) is derived from a cellular isoform (PrPC) that acquires protease resistance posttranslationally. We have used several different experimental approaches in attempts to reconstitute in vitro the processes leading to protease-resistant PrPSc molecules. In the first study, we performed mixing experiments by adding mouse PrP 27-30 (MoPrP27-30), the protease-resistant core of PrPSc, to PrPC and then incubating the mixture to investigate the possibility of heterodimer formation as a first step in prion replication. We used epitopically tagged PrP molecules, synthesized in murine neuroblastoma (N2a) cells transfected with the chimeric mouse/Syrian hamster MHM2 PrP construct, which are recognized by the Syrian hamster-specific monoclonal antibody 3F4. After as long as 24 h of incubation, the reaction mixture was assayed for heterodimeric intermediates of MHM2 PrPC and MoPrPSc and for protease-resistant 3F4-reactive PrP. We were unable to identify any aggregates of MHM2 PrPC and MoPrPSc on immunoblots; furthermore, we did not observe de novo formation of protease-resistant MHM2 PrP. In a second study, MoPrPC was metabolically radiolabeled in scrapie prion-infected N2a cultured cells, and then the cell extract was homogenized and incubated under various conditions to allow for the formation of protease-resistant MoPrPSc. We observed no radiolabeled MoPrPSc by immunoprecipitation after as long as 24 h of in vitro incubation. In a third approach, Syrian hamster PrP (SHaPrP) was synthesized in a cell-free translation system supplemented with microsomal membranes derived from either normal or scrapie prion-infected cultured cells. We found that all SHaPrP species translocated across microsomal membranes from scrapie prion-infected cells were protease sensitive in the presence of detergents and displayed the same topology as those generated by microsomes from normal cells or from dog pancreas. We also studied PrP molecules that encode the codon 102 mutation that causes the rare human prion disease Gerstmann-Str?ussler-Scheinker (GSS) syndrome. On the basis of our data, GSSPrP appears to yield topological forms similar to those of the wild-type PrP when processed by either normal or scrapie prion-derived microsomes.  相似文献   

12.
Valine dehydrogenase (VDH) from Streptomyces coelicolor A3(2) was purified from cell-free extracts to apparent homogeneity. The enzyme had an Mr 41,000 in denaturing conditions and an Mr 70,000 by gel filtration chromatography, indicating that it is composed of two identical subunits. It oxidized L-valine and L-alpha-aminobutyric acid efficiently, L-isoleucine and L-leucine less efficiently, and did not act on D-valine. It required NAD+ as cofactor and could not use NADP+. Maximum dehydrogenase activity with valine was at pH 10.5 and the maximum reductive amination activity with 2-oxoisovaleric acid and NH4Cl was at pH 9. The enzyme exhibited substrate inhibition in the forward direction and a kinetic pattern with NAD+ that was consistent with a sequential ordered mechanism with non-competitive inhibition by valine. The following Michaelis constants were calculated from these data: L-valine, 10.0 mM; NAD+, 0.17 mM; 2-oxoisovalerate, 0.6 mM; and NADH, 0.093 mM. In minimal medium, VDH activity was repressed in the presence of glucose and NH4+, or glycerol and NH4+ or asparagine, and was induced by D- and L-valine. The time required for full induction was about 24 h and the level of induction was 2- to 23-fold.  相似文献   

13.
When grown in a particulate-free, protein-rich medium derived from rapemeal (termed medium B), Streptomyces thermovulgaris produced multiple protease enzymes. The main protease activity was attributed to two types of serine protease, denoted as SV1 and SV2. A metallo protease component (SV3) and an azocaseinase component (SV4) were also present. Protease SV1 had a molecular weight of 30 kDa and a pI of 5.8. Protease SV2 was characterized by a high thermostability in the presence of calcium ions and had a pI of 8.4. This enzyme had a molecular weight of 60 kDa, but we suggest that this is the dimeric form, with 30 kDa being the monomer unit. The method chosen for initial downstream processing influenced both the yield and type of protease purified. When cell-free supernatant fluid was concentrated using ultrafiltration, rather than acetone precipitation, a higher percentage and a greater range of proteases were recovered. The medium used for the growth of Strep. thermovulgaris also appeared to affect the type of protease produced. A more diverse range of proteases were produced on rapemeal-derived medium when compared to yeast extract medium.  相似文献   

14.
To clarify the mechanisms leading to the development of Creutzfeldt-Jakob disease in some recipients of pituitary-derived human growth hormone (hGH), we investigated the effects of repeated injections of low prion doses in mice. The injections were performed, as in hGH-treated children, by a peripheral route at short intervals and for an extended period. Twelve groups of 24 mice were intraperitoneally inoculated one, two, or five times per week for 200 days with 2 x 10(-5) to 2 x 10(-8) dilutions of brain homogenate containing the mouse-adapted C506M3 scrapie strain. Sixteen control mice were injected once a week for 200 days with a 2 x 10(-4) dilution of normal brain homogenate. Of mice injected in a single challenge with a scrapie inoculum of a 2 x 10(-4), 2 x 10(-5), or 2 x 10(-6) dilution, 2/10, 1/10, and 0/10 animals developed scrapie, respectively. Control mice remained healthy. One hundred thirty-five of 135 mice injected with repeated prion doses of a 2 x 10(-5) or 2 x 10(-6) dilution succumbed to scrapie. Of mice injected with repeated scrapie doses of a 2 x 10(-7) or 2 x 10(-8) dilution, 52/59 and 38/67 animals died of scrapie, respectively. A high incidence of scrapie was observed in mice receiving repeated doses at low infectivity, whereas there was no disease in mice that were injected once with the same doses. Repeated injections of low prion doses thus constitute a risk for development of prion disease even if the same total dose inoculated in a single challenge does not induce the disease.  相似文献   

15.
Nitta H  Kobayashi H  Irie A  Baba H  Okamoto K  Imamura T 《FEBS letters》2007,581(30):5935-5939
The effect of a serine protease (ASP) secreted from Aeromonas sobria on plasma coagulation was investigated. Proteolytically active ASP promoted human plasma coagulation in a dose-dependent manner. Consistent with the preference for a factor Xa-specific oligo-peptide substrate, ASP produced enzymatic activity from human prothrombin but not from factors IX and X. ASP cleaved prothrombin to produce enzymatically active 37 kDa-fragment displaying the same molecular mass as alpha-thrombin. ASP is the first bacterial serine protease that produces alpha-thrombin, through which ASP may contribute to the induction of thrombotic tendency in disseminated intravascular coagulation complicated with sepsis caused by A. sobria infections.  相似文献   

16.
免疫印迹法检测牛海绵状脑病和羊瘙痒病   总被引:9,自引:0,他引:9  
用大肠杆菌表达的牛朊病毒正常成熟蛋白 (BoPrPC)免疫新西兰白兔 ,获得了与朊病毒蛋白 (PrP)反应的抗体T1。根据致病型朊病毒 (PrPSC)能抵抗蛋白酶消化的特性 ,用蛋白酶K消化脑组织提取物 ,以抗体T1进行免疫印迹反应 ,结果表明从接种羊瘙痒病朊病毒 2 6 3K的金黄地鼠脑组织提取物内检测到抗蛋白酶K消化的致病型PrPSC ,而正常金黄地鼠脑组织中没有抗蛋白酶消化的蛋白。以我国正常牛羊为材料 ,制备其脑组织提取物 ,用上述方法和抗体T1进行检测 ,结果没有发现抗蛋白酶K的任何蛋白存在 ,说明没有牛海绵状脑病和羊瘙痒病存在。用 1A8抗体也获得了同样的结果。这些结果表明可以用自制的抗血清检疫牛海绵状脑病和羊瘙痒病 ,防止其传入我国  相似文献   

17.
The (R)-imine reductase (RIR) of Streptomyces sp. GF3587 was purified and characterized. It was found to be a NADPH-dependent enzyme, and was found to be a homodimer consisting of 32 kDa subunits. Enzymatic reduction of 10 mM 2-methyl-1-pyrroline (2-MPN) resulted in the formation of 9.8 mM (R)-2-methylpyrrolidine ((R)-2-MP) with 99% e.e. The enzyme showed not only reduction activity for 2-MPN at neutral pH (6.5-8.0), but also oxidation activity for (R)-2-MP under alkaline pH (10-11.5) conditions. It appeared to be a sulfhydryl enzyme based on the sensitivity to sulfhydryl specific inhibitors. It was very specific to 2-MPN as substrate.  相似文献   

18.
19.
Streptomyces mobaraensis secretes a Ca2+-independent transglutaminase (TGase) that is activated by removing an N-terminal peptide from a precursor protein during submerged culture in a complex medium [Pasternack, R., Dorsch, S., Otterbach, J. T., Robenek, I. R., Wolf, S. & Fuchsbauer, H.-L. (1998) Eur. J. Biochem. 257, 570-576]. However, an activating protease could not be identified, probably because of the presence of a 14-kDa protein (P14) belonging to the Streptomyces subtilisin inhibitor family. In contrast, if the microorganism was allowed to grow on a minimal medium, several soluble proteases were extracted, among them the TGase-activating protease (TAMEP). TAMEP was purified by sequential chromatography on DEAE- and Arg-Sepharose and used to determine the cleavage site of TGase. It was clearly shown that the peptide bond between Phe(-4) and Ser(-5) was hydrolyzed, indicating that at least one additional peptidase is necessary to complete TGase processing, even if TAMEP cleavage was sufficient to obtain total activity. Sequence analysis from the N-terminus of TAMEP revealed the close relationship to a zinc endo-protease from S. griseus. The S. griseus protease differs from other members of the M4 protease family, such as thermolysin, in that it may be inhibited by the Streptomyces subtilisin inhibitor. P14 likewise inhibits TAMEP in approximately equimolar concentrations, suggesting its important role in regulating TGase activity.  相似文献   

20.
Evidence that type II 5'-deiodinase is not a selenoprotein.   总被引:6,自引:0,他引:6  
Brain type II 5'-iodothyronine deiodinase and liver type I 5'-iodothyronine deiodinase activities are decreased in rats fed a Se(2+)-deficient diet suggesting that both enzymes are Se(2+)-dependent proteins. Since serum thyroxine (T4) concentrations are twice normal in the Se(2+)-deficient animals, it is unclear whether the Se2+ deficiency or the increased circulating T4 account for the decrease in the brain enzyme. In order to separate these two possibilities, the effects of Se2+ on 5'-deiodinase in glial cells (type II) and LLC-PK1 cells (type I) were examined. LLC-PK1 and glial cells were grown in serum-free defined medium containing 0, 1 pM, 10 nM, and 40 nM Se2+ for 3-5 days or in medium containing 75Se2+ for 24 h. Deiodinase isozymes were determined by measuring catalytic activity and by quantification of the BrAc[125I]T4 affinity-labeled substrate binding subunits. Se2+ deficiency was confirmed by measuring the activity of the selenoprotein, glutathione peroxidase. Se2+ caused a concentration-dependent increase in glutathione peroxidase activity in both cell types, as well as in the type I enzyme, but had no effect on the type II enzyme. LLC-PK1 cells contained multiple 75Se(2+)-labeled proteins including the 27-kDa substrate binding subunit of the type I 5'-deiodinase. Glial cells contained seven 75Se(2+)-labeled proteins ranging in size from 12 to 62 kDa, none of which corresponded to the type II substrate binding subunit. these data show that, unlike the type I enzyme, the type II enzyme does not contain a selenocysteine or selenomethionine, further emphasizing the differences between these two isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号