首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature sensitive rna2 mutation of Saccharomyces cerevisiae causes a rapid and dramatic decrease in the abundance of most ribosomal protein mRNAs We and others have recently shown that the processing of ribosomal protein mRNAs is defective at the nonpermissive temperature, suggesting that inefficient mRNA processing might be responsible for the decline in ribosomal protein mRNA levels. Actin is the only known intron-containing non-ribosomal protein yeast nuclear gene We show here that the processing of actin mRNA is also defective at the nonpermissive temperature in rna2-containing strains. The observation supports the notion that all intron-containing genes are affected in a similar fashion by the rna2 mutation.  相似文献   

2.
3.
4.
5.
Saccharomyces cerevisiae cells respond to a heat shock by temporarily slowing the synthesis of ribosomal proteins (C. Gorenstein and J. R. Warner, Proc. Natl. Acad. Sci. U.S.A. 73:1574-1551, 1976). When cultures growing oxidatively on ethanol as the sole carbon source were shifted from 23 to 36 degrees C, the synthesis of ribosomal proteins was coordinately inhibited twice as rapidly and 45% more severely than in comparable cultures growing fermentatively on glucose. Within 15 min, the relative rates of synthesis of at least 30 ribosomal proteins declined to less than one-sixth their initial values, whereas the overall rate of protein synthesis increased at least threefold. We suggest that this is due primarily to controls at the level of synthesis of messenger ribonucleic acid for ribosomal proteins but may also involve changes in messenger ribonucleic acid stability. In contrast, a nutritional shift-up causes a stimulation of the synthesis of ribosomal proteins. Experiments designed to determine the hierarchy of stimuli affecting the synthesis of these proteins demonstrated that temperature shock was dominant to glucose stimulation. When a culture growing on ethanol was shifted from 23 to 36 degrees C and glucose was added shortly afterward, the decline in ribosomal protein synthesis continued unabated. However, in wild-type cells ribosomal protein synthesis began to recover within 15 min. In mutants temperature sensitive for ribosome synthesis, e.g., rna2, there was no recovery in the synthesis of most ribosomal proteins, suggesting that the product of rna2 is essential for the production of these proteins under all vegetative conditions.  相似文献   

6.
7.
MRP20 and MRP49 are proteins of the large subunit of the mitochondrial ribosome in Saccharomyces cerevisiae. Their genes were identified through immunological screening of a genomic library in the expression vector lambda gt11. Nucleotide sequencing revealed that MRP49 is tightly linked to TPK3 and encodes a 16-kDa, basic protein with no significant relatedness to any other known protein. MRP20 specifies a 263-amino-acid polypeptide with sequence similarity to members of the L23 family of ribosomal proteins. The levels of the mRNAs and proteins for both MRP20 and MRP49 were regulated in response to carbon source. In [rho0] strains lacking mitochondrial rRNA, the levels of the two proteins were reduced severalfold, presumably because the unassembled proteins are unstable. Null mutants of MRP20 converted to [rho-] or [rho0], a characteristic phenotype of mutations in essential genes for mitochondrial translation. Inactivation of MRP49 caused a cold-sensitive respiration-deficient phenotype, indicating that MRP49 is not an essential ribosomal protein. The mrp49 mutants were defective in the assembly of stable 54 S ribosomal subunits at the nonpermissive temperature. With the results presented here, there are now published sequences for 14 yeast mitochondrial ribosomal proteins, only five of which bear discernable relationships to eubacterial ribosomal proteins.  相似文献   

8.
Transcription and processing of intervening sequences in yeast tRNA genes.   总被引:85,自引:0,他引:85  
Genes for yeast tRNATyr and tRNAPhe have been sequenced (Goodman, Olson and Hall, 1977; Valenzuela et al., 1978) which contain additional nucleotides (intervening sequences) within the middle of the gene that are not present in the mature tRNA. We have isolated precursors to rRNATyr and tRNAPhe from a yeast temperature-sensitive mutant (at the rna1 locus) which accumulates only certain precursor tRNAs at the nonpermissive temperature. The tRNATyr and tRNAPhe precursors were analyzed by oligonucleotide mapping; they each contain the intervening sequence and fully matured 5' and 3' termini. Furthermore, these precursors were used as substrates to search for an enzymatic activity which can remove the intervening sequences and religate the ends. We have shown that wild-type yeast contains such an activity, and that this activity specifically removes the intervening sequences to produce mature-sized RNAs.  相似文献   

9.
10.
Polyadenylation of telomerase RNA in budding yeast.   总被引:10,自引:1,他引:9       下载免费PDF全文
C Chapon  T R Cech    A J Zaug 《RNA (New York, N.Y.)》1997,3(11):1337-1351
  相似文献   

11.
12.
Expression of ribosomal-protein genes in Xenopus laevis development   总被引:27,自引:0,他引:27  
Using probes to Xenopus laevis ribosomal-protein (r-protein) mRNAs, we have found that in the oocyte the accumulation of r-protein mRNAs proceeds to a maximum level, which is attained at the onset of vitellogenesis and remains stable thereafter. In the embryo, r-protein mRNA sequences are present at low levels in the cytoplasm during early cleavage (stages 2-5), become undetectable until gastrulation (stage 10) and accumulate progressively afterwards. Normalization of the amount of mRNA to cell number suggests an activation of r-protein genes around stage 10; however, a variation in mRNA turnover cannot be excluded. Newly synthesized ribosomal proteins cannot be found from early cleavage up to stage 26, with the exception of S3, L17 and L31, which are constantly made, and protein L5, which starts to be synthesized around stage 7. A complete set of ribosomal proteins is actively produced only in tailbud embryos (stages 28-32), several hours after the appearance of their mRNAs. Before stage 26 these mRNA sequences are found on subpolysomal fractions, whereas more than 50% of them are associated with polysomes at stage 31. Anucleolate mutants do not synthesize ribosomal proteins at the time when normal embryos do it very actively; nevertheless, they accumulate r-protein mRNAs.  相似文献   

13.
W Zhu  P C Keng  W G Chou 《Mutation research》1992,274(3):237-245
Complementary DNA cloning, differential screening and Northern hybridization techniques were used to study differential gene expression in the wild-type Chinese hamster ovary (CHO) K1 cell line and its two X-ray sensitive mutants, xrs-5 and xrs-6. 11 species of mRNAs were found underexpressed in the two independently isolated mutants. The steady-state levels of those mRNAs are 3-26-fold less in the two mutants, depending on the particular species. 6 of the underexpressed mRNAs have been identified by comparing the sequences of the cloned cDNAs to the known sequences in GenBank. 4 of them code for the structural proteins of ferritin heavy chain, nonmuscle myosin light chain 3nm, ribosomal protein S17 and L7, respectively. The other two have strong homology with mouse B2 or retroviral sequences. The remaining 5 mRNAs did not show significant homology with any of the known sequences and apparently represent newly isolated species. The effect of 137Cs gamma-rays on the expression of the 11 mRNAs has been studied. Radiation inhibited the expression of the B2-like gene in the mutants but not in the wild-type CHO cells. The levels of the other 10 mRNAs were not affected by radiation. The underexpression of this group of genes in both xrs-5 and xrs-6 mutants seems to be related to their radiation-sensitive phenotype, although the specific gene responsible has not been identified. Two models are proposed to explain the mechanism of underexpression. It is suggested that a cellular factor or/and chromosome structural changes are involved.  相似文献   

14.
We have isolated a dominant suppressor of rna mutation (SRN1) that relieves the temperature-sensitive inhibition of mRNA synthesis of ribosomal protein genes in the yeast Saccharomyces cerevisiae. The suppressor was selected for its ability to alleviate simultaneously the temperature-sensitive growth phenotypes of rna2 and rna6. Several independently isolated suppressors appeared to be recessive lethal mutations. One suppressor, SRN1, was recovered as viable in haploid strains. SRN1 can suppress rna2, rna3, rna4, rna5, rna6, and rna8 singly or in pairs, although some combinations of rna mutations are less well suppressed than others. The suppressor allows strains with rna mutations to grow at 34 degrees C but is unable to suppress at 37 degrees C; however, SRN1 does not, by itself, prevent growth at 37 degrees C. In addition, SRN1 suppresses the rna1 mutation which affects general mRNA levels and also leads to the accumulation of precursor tRNA for those tRNAs that have intervening sequences. SRN1 can suppress the rna1 mutation as well as the rna1 rna2 double mutation at 34 degrees C. The suppressor does not affect the temperature-sensitive growth of two unrelated temperature-sensitive mutations, cdc4 and cdc7.  相似文献   

15.
A carrot somatic embryo mutant is rescued by chitinase.   总被引:30,自引:4,他引:26       下载免费PDF全文
At the nonpermissive temperature, somatic embryogenesis of the temperature-sensitive (ts) carrot cell mutant ts11 does not proceed beyond the globular stage. This developmental arrest can be lifted by the addition of proteins secreted by wild-type cells to the culture medium. From this mixture of secreted proteins, a 32-kD glycoprotein, designated extracellular protein 3 (EP3), that allows completion of somatic embryo development in ts11 at the nonpermissive temperature was purified. On the basis of peptide sequences and biochemical characterization, EP3 was identified as a glycosylated acidic endochitinase. The addition of the 32-kD endochitinase to ts11 embryo cultures at the nonpermissive temperature appeared to promote the formation of a correctly formed embryo protoderm. These results imply that a glycosylated acidic endochitinase has an important function in early plant somatic embryo development.  相似文献   

16.
17.
The cellular mutant B812 isolated from a Fisher rat cell line shows temperature sensitivity of focus formation induced by various retroviruses such as recombinant murine retrovirus containing the middle T gene of polyomavirus (PyMLV), Kirsten murine sarcoma virus, Moloney murine sarcoma virus, and recombinant murine retrovirus containing the src gene of Rous sarcoma virus. B812 cells, however, show normal ability to proliferate and synthesize protein at the nonpermissive temperature, suggesting that their mutation is in a gene specifically concerned with the process of transformation by retroviruses. In this work, experiments with hybrids of mutant and wild-type cells showed that the temperature-dependent defect of this mutant was complemented by wild-type cells. To determine the step of transformation that is restricted at the nonpermissive temperature in B812, we examined the expressions of the oncogene (middle T antigen) in no. 7 (wild-type cells) and B812 cultures infected with PyMLV (the chimeric retrovirus containing the middle T gene of polyomavirus) at the permissive and nonpermissive temperatures. Middle T-associated protein kinase activity, the expression of middle T antigen, and PyMLV-specific mRNA were reduced at the nonpermissive temperature in B812 cultures infected with PyMLV. However, integration of PyMLV into the chromosomal DNA of the mutant was not affected at the nonpermissive temperature. These results suggest that B812 cells have a mutation affecting the expression of viral mRNAs from integrated proviral DNA at the nonpermissive temperature.  相似文献   

18.
19.
20.
S Fabijanski  M Pellegrini 《Gene》1982,18(3):267-276
A Drosophila genomic DNA library in the vector Charon 4 was screened using cDNA derived from the small (6S-12S) poly(A)+ mRNA of 2-6-h-old Drosophila embryos. This fraction of mRNA is enriched for ribosomal protein-coding sequences. The selected recombinants were hybridized to total mRNA under conditions which allowed for isolation of homologous mRNAs. The mRNA from these RNA/DNA hybrids was eluted and translated in vitro. The translation products were analyzed by one- and two-dimensional electrophoresis with authentic ribosomal proteins as standards. One cloned DNA segment was found to contain a ribosomal protein gene, and a sequence which hybridizes strongly to at least 5 other ribosomal protein mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号