首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ligand-dependent repression of nuclear receptor activity forms a novel mechanism for regulating gene expression. To investigate the intrinsic role of the corepressor RIP140, we have monitored gene expression profiles in cells that express or lack the RIP140 gene and that can be induced to undergo adipogenesis in vitro. In contrast to normal white adipose tissue and in vitro-differentiated wild-type adipocytes, RIP140-null cells show elevated energy expenditure and express high levels of the uncoupling protein 1 gene (Ucp1), carnitine palmitoyltransferase 1b, and the cell-death-inducing DFF45-like effector A. Conversely, all these changes are abrogated by the reexpression of RIP140. Analysis of the Ucp1 promoter showed RIP140 recruitment to a key enhancer element, demonstrating a direct role in repressing gene expression. Therefore, reduction in the levels of RIP140 or prevention of its recruitment to nuclear receptors may provide novel mechanisms for the control of energy expenditure in adipose cells.  相似文献   

3.
Conditionally immortalized white preadipocytes: a novel adipocyte model   总被引:1,自引:0,他引:1  
This study describes a novel approach to generate conditionally immortalized preadipocyte cell lines from white adipose tissue (IMWAT) that can be induced to differentiate into white adipocytes even after expansion in culture. Such adipocytes express markers of white fat such as peroxisome proliferator-activated receptor gamma and aP2 but not brown fat markers, have an intact insulin signaling pathway, and express proinflammatory cytokines. They can be readily transduced with adenoviral vectors, allowing them to be used to investigate the consequences of the depletion of specific adipocyte factors using short hairpin RNA. This approach has been used to study the effect of reduced expression of the nuclear receptor corepressor receptor interacting protein 140 (RIP140), a regulator of adipocyte function. The depletion of RIP140 results in changes in metabolic gene expression that resemble those in adipose tissue of the RIP140 null mouse. Thus, IMWAT cells provide a novel model for adipocytes that are derived from preadipocytes rather than fibroblasts and provide an alternative system to primary preadipocytes for the investigation of adipocyte function.  相似文献   

4.
5.
6.
7.
8.
9.
Brown adipocytes dissipate chemical energy in the form of heat through the expression of mitochondrial uncoupling protein 1 (Ucp1); Ucp1 expression is further upregulated by the stimulation of β‐adrenergic receptors in brown adipocytes. An increase in energy expenditure by activated brown adipocytes potentially contributes to the prevention of or therapeutics for obesity. The present study examined the effects of milk by‐products, buttermilk and butter oil, on brown adipogenesis and the function of brown adipocytes. The treatment with buttermilk modulated brown adipogenesis, depending on the product tested; during brown adipogenesis, buttermilk 1 inhibited the differentiation of HB2 brown preadipocytes. In contrast, buttermilk 3 and 5 increased the expression of Ucp1 in the absence of isoproterenol (Iso), a β‐adrenergic receptor agonist, suggesting the stimulation of brown adipogenesis. In addition, the Iso‐induced expression of Ucp1 was enhanced by buttermilk 2 and 3. The treatment with buttermilk did not affect the basal or induced expression of Ucp1 by Iso in HB2 brown adipocytes, except for buttermilk 5, which increased the basal expression of Ucp1. Conversely, butter oil did not significantly affect the expression of Ucp1, irrespective of the cell phase of HB2 cells, ie, treatment during brown adipogenesis or of brown adipocytes. The results of the present study indicate that buttermilk is a regulator of brown adipogenesis and suggest its usefulness as a potential food material for antiobesity.  相似文献   

10.
11.
12.
13.
14.
Receptor interacting protein 140 (RIP140), a ligand-dependent corepressor for nuclear receptors, can be modified by arginine methylation. Three methylated arginine residues, at Arg-240, Arg-650, and Arg-948, were identified by mass spectrometric analysis. Site-directed mutagenesis studies demonstrated the functionality of these arginine residues. The biological activity of RIP140 was suppressed by protein arginine methyltransferase 1 (PRMT1) due to RIP140 methylation, which reduced the recruitment of histone deacetylases to RIP140 and facilitated its nuclear export by enhancing interaction with exportin 1. A constitutive negative (Arg/Ala) mutant of RIP140 was resistant to the effect of PRMT1, and a constitutive positive (Arg/Phe) mutation mimicked the effect of arginine methylation. The biological activities of the wild type and the mutant proteins were examined in RIP140-null MEF cells. This study uncovered a novel means to inactivate, or suppress, RIP140, and demonstrated protein arginine methylation as a critical type of modification for corepressor.  相似文献   

15.
Uncoupling protein 1 (Ucp1) is the key component of β-adrenergically controlled nonshivering thermogenesis in brown adipocytes. This process combusts stored and nutrient energy as heat. Cold exposure not only activates Ucp1-mediated thermogenesis to maintain normothermia but also results in adaptive thermogenesis, i.e., the recruitment of thermogenic capacity in brown adipose tissue. As a hallmark of adaptive thermogenesis, Ucp1 synthesis is increased proportionally to temperature and duration of exposure. Beyond this classical thermoregulatory function, it has been suggested that Ucp1-mediated thermogenesis can also be employed for metabolic thermogenesis to prevent the development of obesity. Accordingly, in times of excess caloric intake, one may expect a positive regulation of Ucp1. The general impression from an overview of the present literature is, indeed, an increased brown adipose tissue Ucp1 mRNA and protein content after feeding a high-fat diet (HFD) to mice and rats. The reported increases are very variable in magnitude, and the effect size seems to be independent of dietary fat content and duration of the feeding trial. In white adipose tissue depots Ucp1 mRNA is generally downregulated by HFD, indicating a decline in the number of interspersed brown adipocytes.  相似文献   

16.
17.
18.
The liver X receptors (LXRs) are nuclear receptors that play important roles in the regulation of lipid metabolism. In this study, we demonstrate that receptor-interacting protein 140 (RIP140) is a cofactor for LXR in liver. Analysis of RIP140 null mice and hepatocytes depleted of RIP140 indicate that the cofactor is essential for the ability of LXR to activate the expression of a set of genes required for lipogenesis. Furthermore we demonstrate that RIP140 is required for the ability of LXR to repress the expression of the phosphoenolpyruvate carboxykinase gene in Fao cells and mice. Thus, we conclude that the function of RIP140 as a cofactor for LXR in liver varies according to the target genes and metabolic process, serving as a coactivator in lipogenesis but as a corepressor in gluconeogenesis.  相似文献   

19.
The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator‐activated receptor (Ppar) γ coactivator‐1α (Pgc‐1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte‐selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc‐1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号