首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Effects of antimycin A on 9-aminoacridine (9AA) fluorescencequenching by intact chloroplasts during light-dependent electronflow to different electron acceptors indicated that considerablecyclic electron flow occurs concurrently with linear electrontransport already at low PFDs, when oxygen supported electronflow, but not, when nitrite or methylviologen (MV) were present.Quantum efficiencies of the use of 696 and 675 nm light werecalculated for oxygen-, nitrite- and MV-dependent linear electronflows. Since H+/e=3 during linear electron transport [Ivanov(1993) Photosynthesis, p. 111; Kobayashi et al. (1995) PlantCell Physiol. 36: 1613] and comparable 9AA fluorescence quenchingindicates comparable transthylakoid proton gradients, totalproton transport could be calculated and part of it could beassigned to linear and the remainder to cyclic electron transportwhen oxygen was electron acceptor. Quanta of 696 nm light notused to support linear electron flow to oxygen at h/e=2 wereassumed to be available for coupled proton transport duringcyclic electron flow. H+/h ratios for cyclic electron transportobtained on this basis were consistently higher than 1 and occasionallyapproached 3. No allowance was made in these calculations foroxidized P700 in the reaction center of PSI, which could notdonate electrons to the cyclic pathway, and for reduced QA inthe reaction center of PSII. It therefore appears likely thatmaximum H+/h ratios in cyclic electron transport are higherthan values calculated in this work. Our observations with intactchloroplasts agree in principle with those of [Heath (1972)Biochim. Biophys. Acta 256: 645] with thylakoids, who also reportedhigh H+/ e ratios in cyclic electron transport. These ratiosare briefly discussed in relation to the H+/ATP stoichiometryof ATP production during carbon assimilation of leaves and toprotection of chloroplasts against photoinactivation. 2Present address: Timiriasev Institute of Plant Physiology,Russian Academy of Sciences, Botanicheskaya, 35, Moscow, Russia 3Present address: Department of Forestry, Faculty of Agriculture,Kyushu University, Hakozaki, Higashi-ku, Fukuoka, 812 Japan  相似文献   

2.
Electron donation to P700+ through plastoquinone in the intersystemchain from both respiratory substrates and the photoreductantsin PSI has been shown to be mediated by the NAD(P)H-dehydrogenasecomplex (NDH) in Synechocystis PCC 6803 cells [Mi et al. (1992)Plant Cell Physiol. 33: 1233]. To confirm the participationof NDH in the cyclic electron flow around PSI, the redox kineticsof P700 and Chi fluorescence were analyzed in cells rendereddeficient in respiratory substrates by dark starvation and inspheroplasts. Dark-starved cells showed a high steady-state level of P700+under far-red (FR) illumination and the plastoquinone pool wasin a highly oxidized state. An NDH-defective mutant consistentlyshowed a high level of P700 oxidation under FR before and afterthe dark starvation. Donation of electrons either from exogenousNADPH or from photoreduced NADPH+ to the intersystem chain viaplastoquinone was demonstrated using spheroplasts from wild-typecells, but not those from the NDH-defective mutant, as monitoredby following changes in the kinetics of Chi fluorescence andthe redox state of P700. The electron flow to PSI via plastoquinone,mediated by NADPH, was sensitive to rotenone, Hg2+ ions and2-thenoyltrifluoroacetone, inhibitors of mitochondrial NDH andsuccinate dehydrogenase, but not to antimycin A. The pool sizeof electrons that can be donated to P700+ from the cytosol throughthe intersystem chain increased with increasing duration ofillumination time by actinic light and was sensitive to rotenonein both wild-type cells and spheroplasts, but no such resultswere obtained in the NDH-defective mutant of Synechocystis 6803.The results support our previous conclusion that NDH is a mediatorof both respiratory electron flow and cyclic electron flow aroundPSI to the intersystem chain in the cyanobacterium Synechocystis. (Received August 20, 1993; Accepted November 22, 1993)  相似文献   

3.
The redox kinetics of P700 induced by far-red light and a pulseof strong white light in wild type cells were compared withthose in NAD(P)H dehydrogenase (NDH)-defective mutants of thecyanobacterium Synechocystis PCC 6803. The wild type cells showedthe electron donation from the respiratory donor and the photoreductantgenerated in PS I to P700+ through the plastoquinone, whichis mediated by a Hg2+-sensitive enzyme. The NDH-defective mutantcells, however, did not show the electron transfer to P700+through the plastoquinone from both the photoreductant in PSI and cytosolic electron donors using pyndine nucleotides asan intermediate. Thus, NDH appears to be the site of main entryof electrons into the plastoquinone pool in the NAD(P)H-mediatedcyclic electron flow and the respiratory electron flow in Synechocystis. (Received August 31, 1992; Accepted October 1, 1992)  相似文献   

4.
The light-response curves of P700 oxidation and time-resolved kinetics of P700+ dark re-reduction were studied in barley leaves using absorbance changes at 820 nm. Leaves were exposed to 45 °C and treated with either diuron or diuron plus methyl viologen (MV) to prevent linear electron flow from PS II to PSI and ferredoxin-dependent cyclic electron flow around PSI. Under those conditions, P700+ could accept electrons solely from soluble stromal reductants. P700 was oxidized under weak far-red light in leaves treated with diuron plus MV, while identical illumination was nearly ineffective in diuron-treated leaves in the absence of MV. When heat-exposed leaves were briefly illuminated with strong far-red light, which completely oxidized P700, the kinetics of P700+ dark reduction was fitted by a single exponential term with half-time of about 40 ms. However, two first-order kinetic components of electron flow to P700+ (fast and slow) were found after prolonged leaf irradiation. The light-induced modulation of the kinetics of P700+ dark reduction was reversed following dark adaptation. The fast component (half time of 80–90 ms) was 1.5 larger than the slow one (half time of about 1 s). No kinetic competition occurred between two pathways of electron donation to P700+ from stromal reductants. This suggests the presence of two different populations of PSI. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Cells, of Synechococcus sp. PCC 7002 showed a low oxidationlevel of P700 under a far-red light at 6 W m–2 which inducednearly complete oxidation of P700 in spinach leaves, and a strongerfar-red light was required to observe the oxidation of P700.DCMU did not affect the level of P700+2 but 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinoneinduced the oxidation of P700 under far-red light, indicatingthat the low oxidation level of P700 was due to the donationof electrons to P700+2 from the cytosolic respiratory donorsthrough the intersystem chain at the plastoquinone pool. Theelectron transfer from the cytosolic donors to the intersystemchain was inhibited by HgCl2 but not by antimycin A. The reductionof P700+ in Synechococcus cells, after illumination by strongfar-red light was mostly accounted for by the electron flowto the inter system chain from the respiratory donors (t  相似文献   

6.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

7.
The effect of elevated temperature on electron flow to plastoquinone pool and to PSI from sources alternative to PSII was studied in barley (Hordeum vulgare L.) and maize (Zea mays L.) leaves. Alternative electron flow was characterized by measuring variable fluorescence of chlorophyll and absorption changes at 830 nm that reflect redox changes of P700, the primary electron donor of PSI. The treatment of leaves with elevated temperature resulted in a transient increase in variable fluorescence after cessation of actinic light. This increase was absent in leaves treated with methyl viologen (MV). The kinetics of P700+ reduction in barley and maize leaves treated with DCMU and MV exhibited two exponential components. The rate of both components markedly increased with temperature of the heat pretreatment of leaves when the reduction of P700+ was measured after short (1 s) illumination of leaves. The acceleration of both kinetic components of P700+ reduction by high-temperature treatment was much less pronounced when P700+ reduction rate was measured after illumination of leaves for 1 min. Since the treatment of leaves with DCMU and MV inhibited both the electron flow to PSI from PSII and ferredoxin-dependent cycling of electrons around PSI, the accelerated reduction of P700+ indicated that high temperature treatment activated electron flow to PSII from reductants localized in the chloroplast stroma. We conclude that the lesser extent of activation of this process by elevated temperature after prolonged illumination of heat-inhibited leaves is caused by depletion of the pool stromal reductants in light due to photoinduced electron transfer from these reductants to oxygen.  相似文献   

8.
Phaseolus vulgaris L. grown at a range of external concentrationsof NaCl (0 to 80 mM) responded differently to gaseous anaerobiosis(N2 gas) in nutrient solution or stagnant waterlogging of theroot-zone. With similar patterns of distribution of Na+ andCl- occurring in the plants with comparable NaCl treatments,and similar final concentrations of Na+ and Cl- in plants grownunder both root-zone conditions, rates of uptake of Na+ andCl- were much higher in plants with the stagnant waterloggedrootzones. After 72 h stagnant waterlogging, plant tops fromplants grown at 40 mM NaCl contained 1.42 per cent Na+ and 3.44per cent Cl- (d. wt basis) while after 9 days exposure to NaClwith gaseous anaerobiosis, leaf tissue contained 1.49 per centNa+ and 4.28 per cen Cl- (d. wt basis). Plants exposed to 40mM external NaCl were severely damaged within 72 h when grownwith stagnant waterlogged root-zones; those grown with N2 anaerobiosiscontinued growth and development over the 9 d period. Plantsgrown in nutrient solution showed changes in distribution andconcentration of Na+ and Cl- when oxygen concentration was reducedbelow 21 per cent O2 (full aeration). Phaseolus vulgaris. L., bean, mineral salt distribution, anaerobiosis, salinity, waterlogging  相似文献   

9.
By treating a FA/FB-depleted P700-Fx core from SynechococcusPCC 6301 with diethylether, most of the phylloquinone was removedwithout loss of P700. The 1 ms decay of P700+ in the originalcore was replaced by the 25 ns decay, which was interpretedas the backreaction occurring in a P700+  相似文献   

10.
Transient absorbance changes of the primary electron donor chlorophylla (P680) and acceptor pheophytin a (H) were measured at 77 Kby nanosecond laser spectroscopy in the D1-D2-cytochrome b559photosystem II reaction center complex containing dibromomethylisopropylbenzoquinone (DBMIB). After the laser excitation of the reactioncenter in the presence of DBMIB, only the P680+-(DBMIB-) statewas detected. P680+ mainly decayed with a t1/e of 11 ms. Inthe absence of DBMIB, the excitation produced the P680+H- radicalpair. The radical pair produced the triplet state (P680T) witha t1/e of 50 ns, and P680T then decayed with a t1/e of 2.1 ms.It was concluded that H- was oxidized by DBMIB in a time rangefaster than the detecting time resolution (3.5 ns) even at 77K. The rapid oxidation of H- by DBMIB was also confirmed bythe suppression of delayed fluorescence with a decay t1/e of50 ns. The P680+(DBMIB-)/P680(DBMIB) difference spectrum exhibiteda Qy, band with a peak at 682 nm with a shoulder at 673 nm.The spectral shape was almost temperature insensitive between77 and 265 K. The feature of this spectrum in the wavelengthrange between 330 and 720 nm was compared with that of P680T/P680or H-/H at 77 K. (Received May 8, 1996; Accepted June 24, 1996)  相似文献   

11.
Quantitative study of the cytochrome c acting in the photosyntheticsystem of the blue-green alga Anabaena variabilis (M-2) wasdone with membrane fragments and intact cells. Membrane fragments highly active in the NADP+-Hill reaction(above 200 µmoles/mg chl.a;-hr) retained photoresponsivecytochrome c equal only one-tenth that of P700, while the plastocyanincontent was almost equal to that of P700. The cytochrome contentin intact cells was a little larger than that in membrane fragmentson the chlorophyll a basis. However, the values relative toP700 (1/9) and plastocyanin (1/10) were identical with thosein membrane fragments. The content was also far smaller thanthat of reaction center II's (1/6). If the cytochrome mediatesall electrons from reaction center II, the cytochrome oxidation-reductionshould have a rate constant of 2.4?102 sec–1 which isone order above of the rate constant of the cytochrome reduction(2.3 to 3.5?101sec–1). These quantitative relationshipsindicate that in Anabaena variabilis (M-2), c-type cytochrome,either cytochrome f or algal cytochrome c, cannot function inthe main electron flow between two reaction centers. (Received September 8, 1978; )  相似文献   

12.
The effects of a quinone analogue, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone(DBMIB), on the photochemical activities of isolated pea chloroplastshave been investigated. DBMIB completely inhibits pseudo-cyclicflow with methyl viologen (MV) and partially inhibits non-cyclicflow with ferricyanide (FeCN) in both coupled and uncoupledsystems. It is also shown that, under some circumstances, DBMIBacts like an uncoupler in that it stimulates electron flow andinhibits cyclic photophosphorylation. 1 Present address: 32(1), 6 1/4 Mile, Prome Road, Kamayut P.O., Rangoon, Burma. (Received May 21, 1973; )  相似文献   

13.
Perfused Chara cells were used to measure the rapid light-inducedpotential change (rapid LPC) caused by activation of a K+ channelin the plasma membrane through photosynthesis in the presenceof various photosynthetic inhibitors. The rapid LPC was inhibitedby DCMU but recovered on addition of phenazinemethosulfate (PMS)in the presence of DCMU. Carbonylcyanide m-chlorophenylhydrazone(CCCP) stimulated the rapid LPC. DCCD partially inhibited therapid LPC with a partial inhibition of oxygen evolution. Itis concluded that both cyclic and noncyclic electron flows arecoupled with the rapid LPC. To understand the mechanism of K+ channel activation by photosyntheticelectron flow, the rapid LPC was measured under continuous internalperfusion. It was suggested that a diffusible substance wasnot released from chloroplasts, since vigorous continuous perfusiondid not inhibit the rapid LPC. The suggestion that the rapid LPC is caused by changes in surfacecharge density of chloroplasts was supported by the fact thatthe rapid LPC was inhibited by increasing the ionic strengthof the perfusion medium. (Received February 28, 1986; Accepted April 30, 1986)  相似文献   

14.
The donation of electrons from NADPH to the intersystem chain,as monitored by an increase in Chl fluorescence, occurred inthe isolated thylakoid membranes of Synechocystis PCC 6803.The stimulation by NADPH of the methyl viologen-dependent photoreductionof dioxygen and of the reduction of P700+ after photooxidationin the presence of DCMU also confirmed the donation of electronsfrom NADPH to the electron carriers in the intersystem. Thesereactions were sensitive to rotenone, capsaicin, l-(2-thenoyl)-3,3,3-trifluoroacetoneand HgCl2 but not to antimycin A or flavone. In contrast tothe thylakoid membranes from the wild type, those from a mutant,designated M55, in which a gene of a subunit of the pyridinenucleotide dehydrogenase complex (NDH) had been inactivated,did not show evidence of such reactions. These results supportour previous hypothesis that the transport of electrons fromNADPH to the intersystem chain is mediated by NDH [Mi et al.(1994) Plant Cell Physiol. 35: 163] and indicate the bindingof an NADPH-specific NDH to the thylakoid membranes. The Chlfluorescence was quenched transiently by addition of ferredoxinand NADP+ to the thylakoid membranes but showed a subsequentincrease. This result suggests the reduction of plastoquinoneby the photoreduced NADP+ and initiation of the NADPH-mediatedcyclic flow of electrons around PSI. Furthermore, a similarresponse of Chl fluorescence was observed upon the additionof ferredoxin only, demonstrating the ferredoxin-dependent cyclicflow of electrons. Both pathways of cyclic electron transportwere inhibited by rotenone, and were not detected in the NDH-defectedthylakoid membranes from M55, indicating the participation ofthe NDH complex. These results confirm that, in Synechocystis,the thylakoid-bound NDH complex mediates the ferredoxin-dependentcyclic electron flow, as well as the NADPH-dependent cyclicelectron flow. (Received November 24, 1994; Accepted March 16, 1995)  相似文献   

15.
In "air-grown" Chroomonas sp. cells, low concentrations of DCMU(less than 0.1 µM) could prevent the inhibition of 14CO2fixation by anaerobiosis under light-saturating conditions (morethan 40 W.m–2), with phenazine methosulfate showing asimilar effect. Antimycin A, carbonyl cyanide m-chlorophenylhydrazone(CCCP), and N,N'-dicyclohexylcarbodiimide strongly inhibitedanaerobic photosynthesis at concentrations which did not significantlyinhibit the rate under 2% O2 at high light intensity (200 W.m–2),although 0.2 µM CCCP stimulated the rate under 2% O2 tosome extent. On the other hand, KCN inhibited the rate muchmore strongly under 2% O2 than N2, although it inhibited therate very strongly at concentrations above 5 µM both underN2 and 2% O2. These results suggest that the inhibition of photosynthetic14CO2 fixation by anaerobiosis in this alga result from ATPdeficiency caused by over-reduction of electron carriers ofthe cyclic electron flow and that oxygen can prevent the over-reduction.Cyclic electron flow seems to be necessary to provide additionalATP for CO2 reduction under anaerobic conditions, although itseems to be less necessary under aerobic conditions. (Received July 21, 1983; Accepted January 23, 1984)  相似文献   

16.
The effects of hypo- and hypersaline treatments ranging from7–68% on the intracellular inorganic ion and organic soluteconcentrations were determined in the eulittoral green macroalgaeUlothrix implexa, Ulothrix subflaccida, Enteromorpha bulbosa,Acrosiphonia arcta, and Ulva rigida from Antarctica and SouthernChile. The main inorganic cations were K+, Na+, and Mg2+ inall species. The major osmolyte in E. bulbosa, A. arcta, andU. rigida was K+ at increasing salinities. In both Ulothrixspecies, however, K+ levels declined during hypersaline stressand Na+ concentrations rose significantly. The main inorganicanions were Cl-, SO24-, and PO34- in all algae, while E. bulbosaand U. rigida also contained NO+3. A. arcta showed an extremelyhigh SO2-4 content. The organic solutes proline, sucrose, andß-dimethylsulphoniopropionate (DMSP) played an importantrole in osmotic acclimation. The occurrence of three organicosmolytes suggests an additional function of these solutes ascryoprotectants in the cold-water macroalgae investigated.  相似文献   

17.
Addition of ethylene glycol (EG) or NaCl to cells of Chlamydomonasreinhardtii induced transient non-photochemical quenching ofChl fluorescence correlated with the inhibition of photosyntheticoxygen evolution. The induction of the quenching and subsequentrecovery proceeded not only in the light but also in the dark.The quenching was almost unaffected by the protonophore nigericin,suggesting the involvement of a type of non-photochemical quenchingattributable to a state 2 transition. Higher concentrationsof EG or NaCl caused a delay of the recovery of the maximumfluorescence yield (Fm'). Dark reduction rate of P700+ afterthe application of a flash light in the presence of DCMU wasenhanced by the hyperosmotic shock, suggesting a stimulatedreduction of the intersystem electron carriers. It is proposedthat the osmotic stress stimulates electron donation from stromalcomponents via the NAD(P)H dehydrogenase, which results in thereduction of the intersystem chain and triggering of a state2 transition leading to stimulated cyclic PSI activity. (Received May 16, 1995; Accepted July 26, 1995)  相似文献   

18.
Light-induced changes in stoichiometry among three thylakoidcomponents, PS I, PS II and Cyt b6-f complexes, were studiedwith the cyanophyte Synechocystis PCC 6714. Special attentionwas paid to two aspects of the stoichiometric change; first,a comparison of the patterns of regulation in response to differencesin light-intensity with those induced by differences in light-quality,and second, the relationship between regulation of the stoichiometryand the steady state of the electron transport system. Resultsfor the former indicated that (1) the abundance of PS I on aper cell basis was reduced under white light at the intensityas high as that for light-saturation of photosynthesis, butPS I per cell was increased under low light-intensity, (2) PSII and Cyt b6-f complexes remained fairly constant, and (3)changes in the abundance of PS I depended strictly on proteinsynthesis. The pattern was identical with that of chromaticregulation. For the second problem, the redox steady-statesof Cyt f and P700 under white light of various intensities weredetermined by flash-spectroscopy. Results indicated that (1)Cyt f and P700 in cells grown under low light-intensity [highratio of PS I to PS II (PS I/PS II)] were markedly oxidizedwhen the cells were exposed to high light-intensity, while theyremained in the reduced state under low light-intensity. (2)After a decrease in the abundance of PS I, most of P700 remainedin the reduced state even under high light-intensity, whilethe level of reduced Cyt f remained low. (3) Both Cyt f andP700 in cells of low PS I/PS II were fully reduced under lowlight-intensity, and Cyt f reduction following the flash wasrapid, which indicates that the turnover of PS I limits theoverall rate of electron flow. After an increase in the abundanceof PS I, the electron transport recovered from the biased state.(4) The redox steady-state of the Cyt b6-f complex correlatedwell with the regulation of PS I/PS II while the state of thePQ pool did not. Based on these results, a working model ofthe regulation of assembly of the PS I complex, in which theredox steady-state of the Cyt b6-f complex is closely relatedto the primary signal, is proposed. (Received August 2, 1990; Accepted December 10, 1990)  相似文献   

19.
This study provides evidence for enhanced electron flow from the stromal compartment of the photosynthetic membranes to P700+ via the cytochrome b6/f complex (Cyt b6/f) in leaves of Cucumis sativus L. submitted to chilling-induced photoinhibition. The above is deduced from the P700 oxidation–reduction kinetics studied in the absence of linear electron transport from water to NADP+, cyclic electron transfer mediated through the Q-cycle of Cyt b6/f and charge recombination in photosystem I (PSI). The segregation of these pathways for P700+ rereduction were achieved by the use of a 50-ms multiple turnover white flash or a strong pulse of white or far-red illumination together with inhibitors. In cucumber leaves, chilling-induced photoinhibition resulted in ∼20% loss of photo-oxidizible P700. The measurement of P700+ was greatly limited by the turnover of cyclic processes in the absence of the linear mode of electron transport as electrons were rapidly transferred to the smaller pool of P700+. The above is explained by integrating the recent model of the cyclic electron flow in C3 plants based on the Cyt b6/f structural data [Joliot and Joliot (2006) Biochim Biophys Acta 1757:362–368] and a photoprotective function elicited by a low NADP+/NAD(P)H ratio [Rajagopal et al. (2003) Biochemistry 42:11839–11845]. Over-reduction of the photosynthetic apparatus results in the accumulation of NAD(P)H in vivo to prevent NADP+-induced reversible conformational changes in PSI and its extensive damage. As the ferredoxin:NADP reductase is fully reduced under these conditions, even in the absence of PSII electron transport, the reduced ferredoxin generated during illumination binds at the stromal openings in the Cyt b6/f complex and activates cyclic electron flow. On the other hand, the excess electrons from the NAD(P)H pool are routed via the Ndh complex in a slow process to maintain moderate reduction of the plastoquinone pool and redox poise required for the operation of ferredoxin:plastoquinone reductase mediated cyclic flow.  相似文献   

20.
The light-driven, thiosulfate-dependent reduction of nicotinamideadenine dinucleotides under acrobic conditions in whole cellsof Chromatium vinosum was investigated. The total concentration of pyridine nucleotides in whole cellswas about 50 nmoles per µmole of bacteriochlorophyll.Under dark aerobic conditions, the majority of the nucleotidespresent was NAD+ with about 20% as NADP+. About 40% of the total NAD was reduced under continuous illumination.Thiosulfate or sulfide was needed for the photoreduction, whileorganic acids such as succinate or malate were not. The initialrate of NAD+ photoreduction in the presence of thiosulfate wasapproximately 100 nmoles per µmole of bacteriochlorophyllper min. The NAD+ photoreduction was strongly inhibited by uncouplersand electron transfer inhibitors. In contrast, an energy transferinhibitor, N, N'-dicyclohexylcarbodiimide, did not affect NAD+photoreduction at a concentration at which the light-inducedATP formation was inhibited. A transmembrane electrochemicalH+ gradient generated by cyclic electron transfer may be theenergy source for reduction of NAD+ in Chromatium vinosum. (Received April 2, 1980; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号