首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the antioxidative capacities of oligodendrocytes, rat brain cultures enriched for oligodendroglial cells were prepared and characterized. These cultures contained predominantly oligodendroglial cells as determined by immunocytochemical staining for the markers galactocerebroside and myelin basic protein. If oligodendroglial cultures were exposed to exogenous hydrogen peroxide (100 micro m), the peroxide disappeared from the incubation medium following first order kinetics with a half-time of approximately 18 min. Normalization of the disposal rate to the protein content of the cultures by calculation of the specific hydrogen peroxide detoxification rate constant revealed that the cells in oligodendroglial cultures have a 60% to 120% higher specific capacity to dispose of hydrogen peroxide than cultures enriched for astroglial cells, microglial cells or neurones. Oligodendroglial cultures contained specific activities of 133.5 +/- 30.4 nmol x min(-1) x mg protein(-1) and 27.5 +/- 5.4 nmol x min(-1) x mg protein(-1) of glutathione peroxidase and glutathione reductase, respectively. The specific rate constant of catalase in these cultures was 1.61 +/- 0.54 min(-1) x mg protein(-1). Comparison with data obtained by identical methods for cultures of astroglial cells, microglial cells and neurones revealed that all three of the enzymes which are involved in hydrogen peroxide disposal were present in oligodendroglial cultures in the highest specific activities. These results demonstrate that oligodendroglial cells in culture have a prominent machinery for the disposal of hydrogen peroxide, which is likely to support the protection of these cells in brain against peroxides when produced by these or by surrounding brain cells.  相似文献   

2.
3.
1. Secretory pathway Ca(2+) ATPase type 1 (SPCA1) is a newly recognized Ca(2+)/Mn(2+)-transporting pump localized in membranes of the Golgi apparatus. 2. The expression level of SPCA1 in brain tissue is relatively high in comparison with other tissues. 3. With the aim to determine the expression of SPCA1 within the different types of neural cells, we investigated the distribution of SPCA1 in neuronal, astroglial, oligodendroglial, ependymal, and microglial cell cultures derived from rat brains. 4. Western Blot analysis with rabbit anti-SPCA1 antibodies revealed the presence of SPCA1 in homogenates derived from neuronal, astroglial, ependymal, and oligodendroglial, but not from microglial cells. 5. Cell cultures that gave rise to positive signal in the immunoblot analysis were also examined immunocytochemically. 6. Immunocytochemical double-labeling experiments with anti-SPCA1 serum in combination with antibodies against cell-type specific proteins showed a localization of the SPCA1signal within cells stained positively also for GFAP, alpha-tubulin or MBP. 7. These results definitely established the expression of SPCA1 in astroglial, ependymal, and oligodendroglial cells. 8. In addition, the evaluation of neuronal cultures for the presence of SPCA1 revealed an SPCA1-specific immunofluorescence signal in cells identified as neurons.  相似文献   

4.
1. Secretory pathway Ca2+ ATPase type 1 (SPCA1) is a newly recognized Ca2+/Mn2+-transporting pump localized in membranes of the Golgi apparatus.2. The expression level of SPCA1 in brain tissue is relatively high in comparison with other tissues.3. With the aim to determine the expression of SPCA1 within the different types of neural cells, we investigated the distribution of SPCA1 in neuronal, astroglial, oligodendroglial, ependymal, and microglial cell cultures derived from rat brains.4. Western Blot analysis with rabbit anti-SPCA1 antibodies revealed the presence of SPCA1 in homogenates derived from neuronal, astroglial, ependymal, and oligodendroglial, but not from microglial cells.5. Cell cultures that gave rise to positive signal in the immunoblot analysis were also examined immunocytochemically.6. Immunocytochemical double-labeling experiments with anti-SPCA1 serum in combination with antibodies against cell-type specific proteins showed a localization of the SPCA1signal within cells stained positively also for GFAP, α-tubulin or MBP.7. These results definitely established the expression of SPCA1 in astroglial, ependymal, and oligodendroglial cells.8. In addition, the evaluation of neuronal cultures for the presence of SPCA1 revealed an SPCA1-specific immunofluorescence signal in cells identified as neurons.  相似文献   

5.
Abstract— Chromatin protein kinase and histone methyltransferase are present in two nuclear populations, neuronal and oligodendroglial. At least 30% of the enzymes are tightly bound to chromatin. The specific activities of both enzymes are higher in neuronal populations than in oligodendroglial. Protein kinase from these nuclear populations phosphorylates endogenous protein; however, the methyltransferase requires exogenous histone as substrate. The methyltransferase from both nuclear populations preferentially methylates lysine-rich histone.  相似文献   

6.
DNA polymerase activity in isolated neuronal, astroglial, and oligodendroglial cell-enriched fractions from rat brains of different ages was measured. Attempts were made to distinguish the total activity into beta and alpha polymerase types making use of inhibitors like ddTTP and aphidicolin. The results indicate that at all the ages studied (16th day embryonic and 1, 225, and greater than 540 days postnatal), neurons possess the highest polymerase activity in comparison with other types of cells. Further, throughout the postnatal life the polymerase present in neuronal cells is of the beta type and this activity remains fairly constant from adult to old age. In contrast, both astroglial and oligodendroglial cells at adult and old stages of life appear to possess other type(s) of polymerase activity in addition to the predominant beta polymerase. It is inferred that neurons, being postmitotic, are equipped with efficient DNA-repair machinery throughout their life span.  相似文献   

7.
8.
A simplified method was developed for the bulk separation of neuronal perikarya and astroglial celis from adult rat brain without the involvement of density gradients. Activities of various enzymes involved in glutamate metabolism were estimated and compared with those of synaptosomes. The activities of glutamate dehydrogenase and aspartate aminotransferase were higher in synaptosomes than in neuronal perikarya or glia. Glutamine synthetase was distributed in all the three fractions while glutaminase activity was higher in astrocytes than in synaptosomes and was not detectable in neuronal perikarya. The significance of these results in relation to metabolic compartmentation was discussed.  相似文献   

9.
Abstract: Glycerol phosphate dehydrogenase (GPDH), glucose-6-phosphate dehydrogenase (G6PDH), and lactate dehydrogenase (LDH) activities were determined in Oligodendrocytes, neurons, and astrocytes isolated from the brains of developing rats. The activity of each enzyme was significantly lower in both neurons and astrocytes than in Oligodendrocytes. The GPDH activity in Oligodendrocytes increased more than 4-fold during development, and at 120 days cells of this type had 1.4-fold the specific activity of forebrain homogenates. The G6PDH activities in Oligodendrocytes from 10-day-old rats were 1.4-fold the activities in the forebrain homogenates. The activities of this enzyme in Oligodendrocytes were progressively lower at later ages, such that at 120 days the cells had 0.8 times the specific activities of homogenates. The Oligodendrocytes had 0.6 times the homogenate activities of LDH at 10 days, and this ratio had decreased to 0.2 by 120 days. These enzymes were also measured in myelin isolated from 20-, 60-, and 120-day-old rats. By 120 days the specific activities of G6PDH and LDH in myelin were <8% of the respective activities in homogenates. The GPDH activity in myelin was, however, at least 20% the specific activity in the homogenates, even in the oldest animals. It is proposed that LDH could be used as a marker for oligodendroglial cytoplasm in subfractions of myelin and in myelin-related membrane vesicles.  相似文献   

10.
Enzymes with high specific activities at low temperatures have potential uses for chemical conversions when low temperatures are required, as in the food industry. Psychrotrophic microorganisms which grow at low temperatures may be a valuable source of cold-active enzymes that have higher activities at low temperatures than enzymes found for mesophilic microorganisms. To find cold-active beta-galactosidases, we isolated and characterized several psychrotrophic microorganisms. One isolate, B7, is an Arthrobacter strain which produces beta-galactosidase when grown in lactose minimal media. Extracts have a specific activity at 30 degrees C of 2 U/mg with o-nitrophenyl-beta-D-galactopyranoside as a substrate. Two isozymes were detected when extracts were subjected to electrophoresis in a nondenaturing polyacrylamide gel and stained for activity with 5-bromo-4-chloro-indolyl-beta-D-galactopyranoside (X-Gal). When chromosomal DNA was prepared and transformed into Escherichia coli, three different genes encoding beta-galactosidase activity were obtained. We have subcloned and sequenced one of these beta-galactosidase genes from the Arthrobacter isolate B7. On the basis of amino acid sequence alignment, the gene was found to have probable catalytic sites homologous to those from the E. coli lacZ gene. The gene encoded a protein of 1,016 amino acids with a predicted molecular mass of 111 kDa. The enzyme was purified and characterized. The beta-galactosidase from isolate B7 has kinetic properties similar to those of the E. coli lacZ beta-galactosidase but has a temperature optimum 20 degrees C lower than that of the E. coli enzyme.  相似文献   

11.
Prostaglandin (PG) and thromboxane (TX) biosynthesis in primary neuronal and astroglial cell cultures was studied. Cultures obtained from fetal (15–16 days old) and neonatal rat brain hemispheres were characterized by chemical and immunocytochemical staining techniques as predominantly neurons or mature and immature astrocytes, respectively. Six-day old neuronal cell cultures grown in the presence of cytosine arabinoside (2 μM) from the day 3 onwards were contaminated up to 10% with glioblasts. In astroglial cultures up to 3% of the cells were postively stained with a marker for oligodendroglial cells. Fibroblast contamination was below 1% in both cultures. Prostanoid formation (measured by specific radioimmunoassays) in 6-day old neuronal cell cultures was low (sum of the amount of PGs and TX formed: 1.16 ± 0.17 (ng/mg protein/15 min) as compared to 14-day old cultured astroglial cells: 21.27 ± 2.53 (ng/mg protein/15 min). Also the pattern of prostanoids formed was different in neuronal (PGD2 ? PGF2α > TXB2 ? PGE2) and astroglial cells (PGD2 > TXB2 ? PGF2α ? PGE2 ? 6-ketoPGF1α). Preincubation with arachidonic acid (1 μg/ml) did not affect prostanoid formation in both cultures, whereas it was stimulated 4–6-fold by addition of the calcium ionophore A23187 (1 μM). These results, although found on cultured neuronal and glial cells of different stages of development, support the view that astroglial cells might play a crucial role in brain prostanoid synthesis.  相似文献   

12.
13.
Polymorphonuclear leucocytes were isolated from pig blood relatively free from other cells and were characterised biochemically and morphologically and compared with human PMNLs. The activities of 16 enzymes of porcine and human PMNLs were measured and compared. Alkaline phosphatase, acid phosphatase, phosphodiesterase, gamma-glutamyl transpeptidase, NADH-cytochrome c oxidoreductase, malate dehydrogenase and acetylcholinesterase had higher specific activities in procine than in human cells. Alkaline phosphatase has an 87-fold higher specific activity in porcine than in human cells. beta-glucuronidase, lysozyme, beta-galactosidase, N-acetyl-glucosaminidase, beta-glucosidase, myeloperoxidase and catalase had higher specific activities in human than in porcine cells. beta-glucuronidase and myeloperoxidase showed over a 1000- and a 13-fold higher specific activity, respectively, in human than in porcine cells. Porcine PMNLs are readily available in large numbers and are recommended for studies of phagocytosis, chemotaxis and membrane biochemistry.  相似文献   

14.
The activities of various glycosidases in homogenates of the small-intestinal mucosa of one adult and two suckling echidnas, Tachyglossus aculeatus, were investigated. The activities of lactase (beta-D-galactosidase), beta-N-acetylglucosaminidase, neuraminidase and alpha-L-fucosidase were higher in the sucklings than in the adult animal. Maltase and isomaltase activities were lower. Sucrase and cellobiase activities were absent or present in trace amounts only. The lactase activity had a pH optimum of 4.0-4.5, was predominantly in the soluble fraction following ultracentrifugation and was inhibited by p-chloromercuribenzene sulfonate, suggesting that it was due to a lysosomal acid beta-galactosidase and not a brush-border neutral lactase. The maltase activity of the sucklings also had the characteristics predominantly of a lysosomal acid hydrolase. It is proposed that in suckling echidnas, the oligosaccharides (mainly neuraminyllactose and fucosyllactose) of the mother's milk are digested intracellularly by lysosomal enzymes, rather than at the brush border, of the epithelial cells of the small-intestinal mucosa.  相似文献   

15.
The immortalized rat brain microvessel endothelial cell line RBE4 was used to investigate the in vitro regulation of two blood-brain barrier specific enzymes, gamma-glutamyl transpeptidase (GTP) and alkaline phosphatase (ALP). The effects of bFGF, astroglial factors, and retinoic acid (a cell differentiation agent) on GTP and ALP activities were separately or simultaneously studied in order to define optimal culture conditions for induction of these two specific enzymes of the blood-brain barrier. In the present study, a phenotypically distinct subpopulation of endothelial cells has been shown to develop from confluent cobblestone monolayers of RBE4 immortalized cerebral endothelial cells. These distinct cells were present within multicellular aggregates and specifically exhibited GTP and ALP activities. Addition of bFGF, astroglial factors, or retinoic acid induced the formation of these three-dimensional structures and in consequence an increase in GTP and ALP activities. For retinoic acid and astroglial factors, this increase could also be explained by the stimulation of either GTP or ALP expression in the phenotypically distinct positive cells associated with aggregates. Simultaneous treatment with retinoic acid and astroglial factors had a synergistic effect on GTP and ALP expression and thus may allow these distinct cells to evolve toward a more differentiated state. Since such results were also obtained with physiological concentrations of retinoic acid, we suggest that addition of this agent might contribute to greater differentiation of cells in in vitro blood-brain barrier models where endothelial cells are cocultured with astrocytes. © 1996 Wiley-Liss, Inc.  相似文献   

16.
—A method is described for the fractionation of bulk isolated oligodendroglial cells from calf brain to produce both a plasma membrane and an attached myelin fraction. The cells are homogenized in a sucrose solution containing Mg2+ and K+ at a pH of 6·5. Crude membrane fractions are obtained from this homogenate by discontinuous sucrose density gradient centrifugation. After being subjected to osmotic shock, these fractions are purified by continuous sucrose density gradient centrifugation. The plasma membrane fraction, which bands at 1·0 m -sucrose, was identified by its morphology and enzyme content. Electron microscopy showed it to be a homogeneous preparation of vesicles composed, for the most part, of smooth trilaminar membranes. Enzymatic analysis revealed the presence of high specific activities of Na+, K+-ATPase, 5′-nucleotidase and 2′,3′-cyclic AMPase. Lipid analysis showed a higher galactolipid and lower phospholipid content than has been reported for neuronal and synaptic membranes. The attached myelin fraction, which bands at 0·7 m -sucrose has the typical multilamellar appearance of myelin, but differs considerably from normal myelin in having high concentrations of plasma membrane marker enzymes, and a lipid composition intermediate between normal myelin and the plasma membrane fraction. The ganglioside content and protein patterns of these fractions have also been examined.  相似文献   

17.
To determine the cellular localization of nervous tissue peptidases, 7 peptidases and 2 lysosomal marker enzyme activities were measured in cultured mouse and rat cells. Neuronal cells of both species exhibited higher activities of angiotensin-converting enzyme (ACE) and prolyl endopeptidase (Pro-EP) than glial cells did. In contrast, arginyl endopeptidase and lysosomal enzymes (acid phosphatase, β-glucuronidase) in the neuronal cell lines were lower than those in the glial cell lines. Other peptidases (alanyl aminopeptidase, arginyl aminopeptidase, leucyl aminopeptidase, dipeptidyl aminopeptidase) activities were not specifically localized in either cell lines. The effects of cellular differentiation on these peptidase activities in the PC 12h cell line and rat glioblasts were also examined using nerve growth factor (NGF) and glia maturation factor (GMF), respectively. Neuron specific peptidase (ACE and Pro-EP) activities were decreased in PC12h cells cultured with NGF, and Pro-EP activity was increased in the glioblast cells cultured with GMF. These results support the idea that some of the peptidases are differentially localized in neuronal or glial cells, and play physiological roles in central or peripheral neural tissues.  相似文献   

18.
Rat brain homogenate and the synaptosmal and neuronal perikarya fractions from 17-day-old rats were compared for their activities in sialosylating endogenous gangliosides and transferring N-acetylneuraminic acid and galactose to several glycolipids in vitro. The sialosylation of endogenous gangliosides and the activities of sialosyltransferases acting either on lactosylceramide or haematoside as acceptors, as well as galactosyltransferase acting on Tay-Sachs ganglioside as acceptor, were between 3-and 12-fold higher in the neuronal perikarya fraction than in whole homgenate on a protein or ganglioside basis. The activities found in the synaptosomal fraction were negligible. No evidence was found to indicate that the low activities in this fraction were due to the presence of inhibitors of the transfer activities or to inacessibility of the substrates to their respective enzymes. These findings, and the time course of labelling of gangliosides of the neuronal perikarya and synaptosomes from rats that received an injection of N-[3H]acetylmannosamine, indicate that the main cellular site of glycosylation of neuronal gangliosides is in the neuronal perikarya.  相似文献   

19.
Astrocyte-rich primary cultures (APCs) are frequently used as a model system for the investigation of properties of brain astrocytes. However, as APCs contain a substantial number of microglial and oligodendroglial cells, biochemical parameters determined for such cultures may at least in part reflect also the presence of the contaminating cell types. To lower the potential contributions of microglial and oligodendroglial cells on properties of the astrocytes in APCs we prepared rat astrocyte-rich secondary cultures (ASCs) by subculturing of APCs and compared these ASCs with APCs regarding basal metabolic parameters, specific enzyme activities and the accumulation of iron oxide nanoparticles. Immunocytochemical characterization revealed that ASCs contained only minute amounts of microglial and oligodendroglial cells. ASCs and APCs did not significantly differ in their specific glucose consumption and lactate production rates, in their specific iron and glutathione contents, in their specific activities of various enzymes involved in glucose and glutathione metabolism nor in their accumulation of iron oxide nanoparticles. Thus, the absence or presence of some contaminating microglial and oligodendroglial cells appears not to substantially modulate the investigated metabolic parameters of astrocyte cultures.  相似文献   

20.
The activities of alpha-glucosidase, beta-glucosidase, and beta-galactosidase were studied during the isolation and purification of lectins from Azospirillum brasilense Sp7 and Azospirillum lipoferum 59b cells. These enzymatic activities were revealed in crude extracts of surface proteins, protein fraction precipitated with ammonium sulfate or ethanol-acetone mixture, and protein fraction obtained by gel filtration on Sephadex G-75. The distribution of the enzymes between different protein fractions varied among the azospirilla studied. The cofunction of the A. brasilense Sp7 lectin and beta-galactosidase on the cell surface is assumed. A strong interaction between the A. lipoferum 59b lectin and glucosidases was revealed. The lectin from A. lipoferum 59b may possess saccharolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号