共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Three kinds of nucleoside phosphatases were demonstrated histochemically in the cat carotid body with nucleoside triphosphate, nucleoside disphosphate and nucleoside monophosphate as substrates. Each of these enzyme activities exhibited the substrate specificity respectively. The nucleoside triphosphatase activity showed specific localization in association with the parenchymal cells of the carotid body.The electronmicroscopy revealed that the reaction product was located on and between the two apposing plasma membranes of type I and type II cells, of a type II cell and its wrapping axons and of the intricate basal infolding of a type II cell itself.Some possible functions of the adenosine triphosphatase in the carotid body are discussed. 相似文献
2.
D. Schäfer E. Seidl H. Acker H. -P. Keller D. W. Lübbers 《Cell and tissue research》1973,142(4):515-524
Summary In artery surrounding areas in the periphery of the carotid body of the cat we found arteriovenous anastomoses differing in respect to their character. So far, it is not yet to decide the frequency of their occurrence and their functional significance. The anastomoses were demonstrated by light microscopy of serial sections and by scanning electron microscopy with a more developed corrosion casting technique.
Zusammenfassung In den arteriennahen, peripheren Bereichen des Glomus caroticum der Katze wurden arteriovenöse Verbindungen nachgewiesen, die ihrem Charakter nach unterschiedlich sind. Es ist allerdings noch nicht zu entscheiden, ob derartige Anastomosen regelmäßig vorkommen und wie sie funktionieren. Die beschriebenen Gefäßverbindungen konnten lichtmikroskopisch anhand von histologischen Serienschnitten und mit Hilfe einer weiterentwickelten Korrosionstechnik im Rasterelektronenmikroskop dargestellt werden.相似文献
3.
Monoamines in the carotid body cells of the cat 总被引:1,自引:0,他引:1
S R Chiocchio M P King L Carballo E T Angelakos 《The journal of histochemistry and cytochemistry》1971,19(10):621-626
4.
Carbonic anhydrase and chemoreception in the cat carotid body 总被引:2,自引:0,他引:2
Iturriaga R.; Lahiri S.; Mokashi A. 《American journal of physiology. Cell physiology》1991,261(4):C565
5.
Reactive oxygen species (ROS) induce DNA damage with the ensuing activation of the chromosomal repair enzyme poly(ADP-ribose) polymerase (PARP). ROS also interact with the function of carotid body chemoreceptor cells. The possibility arises that PARP is part of the carotid chemosensing process. This study seeks to determine the presence of PARP and its changes in response to contrasting chemical stimuli, hypoxia and hyperoxia, both capable of generating ROS, in cat carotid bodies. The organs were dissected from anesthetized cats exposed in vivo to acute normoxic (PaO2 approximately 90 mmHg), hypoxic (PaO2 approximately 25 mmHg), and hyperoxic (PaO2 > 400 mmHg) conditions. Carotid body homogenate was the source of PARP and [adenine 14C] NAD was the substrate in the assay. Specimens of the superior cervical ganglion and brainstem were used as reference tissues. We found that PARP activity amounted to 27 pmol/mg protein/min in the normoxic carotid body. The activity level more than doubled in both hypoxic and hyperoxic carotid bodies. Changes of PARP in the reference tissues were qualitatively similar. We conclude that PARP is present in the carotid body but the augmentation of the enzyme activity in both hypoxia and hyperoxia reflects DNA damage, induced likely by ROS and being universal for neural tissues, rather than a specific involvement of PARP in the chemosensing process. 相似文献
6.
7.
8.
9.
Kynurenine-3-monooxygenase (KM), the third enzyme in the kynurenine (KYN) pathway from tryptophan to quinolinic acid (QA), is a monooxygenase requiring oxygen, NADPH and FAD for the catalytic oxidation of L-kynurenine to 3-hydroxykynurenine and water. KM is innately low in the brain and similar in activity to indoleamine oxidase, the rate-limiting pathway enzyme. Accumulation in the CNS of QA, a known excitotoxin, is proposed to cause convulsions in several pathologies. Thus, we theorized that hyperbaric oxygen (HBO) induced convulsions arise from increased QA via oxygen K, effects on this pathway [Brown OR, Draczynska-Lusiak. Oxygen activation and inactivation of quinolinate-producing and iron-requiring 3-hydroxyanthranilic acid oxidase: a role in hyperbaric oxygen-induced convulsions? Redox Report 1995; 1: 383-385]. To complement prior studies on the effects of oxygen on pathway enzymes, in this paper we report the effects of oxygen on KM. Brain and liver KM enzyme are not known to be identical, and some systemically-produced KYN pathway intermediates can permeate the brain and might stimulate the brain pathway. Thus, KM from both brain and liver was assayed at various oxygen substrate concentrations to evaluate, in vitro, the potential effects of increases in oxygen, as would occur in mammals breathing therapeutic and convulsive HBO. In crude tissue extracts, KM was not activated during incubation in HBO up to 6 atm. The effects of oxygen as substrate on brain and liver KM activity was nearly identical: activity was nil at zero oxygen with an apparent oxygen Km of 20-22 microM. Maximum KM activity occurred at about 1000 microM oxygen and decreased slightly to plateau from 2000 to 8000 microM oxygen. This compares to approximately 30-40 microM oxygen typically reported for brain tissue of humans or rats breathing air, and an unknown but surely much lower value (perhaps below 1 microM) intracellularly at the site of KM. Thus HBO, as used therapeutically and at convulsive pressures, likely stimulates flux through the KM-catalyzed step of the KYN pathway in liver and in brain and could increase brain QA, by Km effects on brain KM, or via increased KM pathway intermediates produced systemically (in liver) and transported into the brain. 相似文献
10.
The mammalian carotid body contains a number of different cell types which are not always easy to identify in routine histological sections. We have devised a battery of immunohistochemical tests which overcome this difficulty and offer the possibility of performing routine morphometric analyses of the response of the organ to various pathological processes in paraffin-embedded sections. The type 1 cells can be identified on the basis of their reaction with neuronal specific enolase, whilst type II cells react with antibodies to S-100 protein. Schwann cells do not react with S-100 antibodies but do so with antibodies to glial fibrillary acidic protein; nerve fibres can be identified by their reaction to neurofibrillary protein. 相似文献
11.
《Redox report : communications in free radical research》2013,18(2-3):81-84
AbstractKynurenine-3-monooxygenase (KM), the third enzyme in the kynurenine (KYN) pathway from tryptophan to quinolinic acid (QA), is a monooxygenase requiring oxygen, NADPH and FAD for the catalytic oxidation of L-kynurenine to 3-hydroxykynurenine and water. KM is innately low in the brain and similar in activity to indoleamine oxidase, the rate-limiting pathway enzyme. Accumulation in the CNS of QA, a known excitotoxin, is proposed to cause convulsions in several pathologies. Thus, we theorized that hyperbaric oxygen (HBO) induced convulsions arise from increased QA via oxygen Km effects on this pathway [Brown OR, Draczynska-Lusiak. Oxygen activation and inactivation of quinolinate-producing and iron-requiring 3-hydroxyanthranilic acid oxidase: a role in hyperbaric oxygen-induced convulsions? Redox Report 1995; 1: 383–385]. To complement prior studies on the effects of oxygen on pathway enzymes, in this paper we report the effects of oxygen on KM. Brain and liver KM enzyme are not known to be identical, and some systemically-produced KYN pathway intermediates can permeate the brain and might stimulate the brain pathway. Thus, KM from both brain and liver was assayed at various oxygen substrate concentrations to evaluate, in vitro, the potential effects of increases in oxygen, as would occur in mammals breathing therapeutic and convulsive HBO. In crude tissue extracts, KM was not activated during incubation in HBO up to 6 atm. The effects of oxygen as substrate on brain and liver KM activity was nearly identical: activity was nil at zero oxygen with an apparent oxygen Km of 20–22 µM. Maximum KM activity occurred at about 1000 µM oxygen and decreased slightly to plateau from 2000 to 8000 µM oxygen. This compares to approximately 30–40 µM oxygen typically reported for brain tissue of humans or rats breathing air, and an unknown but surely much lower value (perhaps below 1 µM) intracellularly at the site of KM. Thus HBO, as used therapeutically and at convulsive pressures, likely stimulates flux through the KM-catalyzed step of the KYN pathway in liver and in brain and could increase brain QA, by Km effects on brain KM, or via increased KM pathway intermediates produced systemically (in liver) and transported into the brain. 相似文献
12.
Di Giulio C Huang W Waters V Mokashi A Bianchi G Cacchio M Macrì MA Lahiri S 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2003,134(1):27-31
It is known that atrial natriuretic peptide (ANP) is released from cardiac myocyte and other stores during hypoxia and is involved in pulmonary-cardiovascular reflexes and in natriuresis and diuresis. Since the carotid body initiates hypoxic chemoreflexes, we hypothesized that ANP could potentiate the hypoxic stimulation of the carotid body chemoreceptor in vivo. We studied the effect of close intra-arterial injection of ANP on carotid chemoreceptor activity in anesthetized male cats which were paralyzed and artificially ventilated. Graded doses of ANP (0-10 nmoles) were administered by intra-arterial injections and they produced an excitatory response. Single dose of ANP (6.5 nmoles) at four steady-state levels of arterial PO(2), at constant PCO(2), produced increases of chemoreceptor activity. This increase of chemoreceptor activity with ANP in the presence of CO(2)-HCO(3)(-) in vitro could make a difference from those without CO(2)-HCO(3)(-) in vivo. 相似文献
13.
14.
15.
16.
Summary Two postganglionic branches of the superior cervical ganglion enter the area of the carotid bifurcation in the rabbit and the cat. The common and external carotid arteries receive a rich adrenergic nerve supply, which can be demonstrated by fluorophores of biogenic amines appearing after formaldehyde treatment. The internal carotid artery is only sparsely innervated; however, it shows a dense sympathetic supply at the site of pressor receptors. Following removal of the superior cervical ganglion, a total loss of fluorescent adrenergic nerves occurs and degeneration of nerve endings possessing dense core vesicles is conspicuous. These nerve terminals are situated mainly subendothelially in the carotid body sinusoids; they only rarely terminate on type I cells. 相似文献
17.
18.
R Iturriaga W L Rumsey S Lahiri D Spergel D F Wilson 《Journal of applied physiology》1992,72(6):2259-2266
To test the hypothesis that O2 chemoreception in the carotid body (CB) is mediated by cellular acidosis, we simultaneously measured responses of the chemosensory and intracellular pH (pHi) to agents that are known to change pHi and studied the effects of hypoxia and ischemia on these variables in the cat CB. The CB was perfused and superfused in vitro with a modified Tyrode's solution at 36.0 +/- 0.5 degrees C with or without CO2-HCO3- (pH 7.40) and equilibrated at a given PO2. Chemosensory discharges were recorded from the whole carotid sinus nerve. To measure pHi changes, the CB was loaded with the pH-sensitive indicator 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and the fluorescence (excitation 420-490 nm, emission greater than 515 nm) was detected by an intensified charged coupled device camera with an epifluorescence macroscope. Boluses of Tyrode's solution (0.5 ml, free of CO2-HCO3-) containing sodium acetate or NH4Cl prolonged perfusion of acid Tyrode's solution (pH 7.20-6.50), and boluses of Tyrode's solution with CO2-HCO3- were used. A decrease of fluorescence indicated pHi turning acid, and an increase of fluorescence indicated a change in alkaline pHi. Chemosensory activity varied inversely with the fluorescence change after application of these agents. Interruption of perfusate flow or application of hypoxic perfusate resulted in large increases in chemosensory discharge without any change in the fluorescence. The results indicated that chemosensory responses to brief ischemia and hypoxia were not mediated by a fall of pHi of CB cells, whereas those to CO2 and extracellular acidity were associated with decreases in pHi. 相似文献
19.
Lahiri S.; Rumsey W. L.; Wilson D. F.; Iturriaga R. 《Journal of applied physiology》1993,75(3):1035-1043
20.
In the carotid body (CB) of the anesthetized cat tissue Po2 (Pto2) measured with a micro O2 electrode averaged about 65 mmHg at normal arterial pressure (mean = 96 mmHg). Pto2 correlated significantly with the hematocrit of the arterial blood but not with % saturation. When arterial pressure was reduced (mean = 58 mmHg) by bleeding Pto2 fell significantly. Phentolamine injection (1 mg/kg iv) at the reduced pressure caused Pto2 to rise significantly. At normal arterial pressure blowing moistened O2 over the CB did not affect Pto2 if the electrode tip was about 90 mum into the CB. At a reduced pressure (and blood flow) the sensitive depth increased to about 301 mum, and to about 600 mum when flow was stopped. We concluded that a) the increased chemoceptor discharge usually seen with hemorrhage is due to reduced Pto2; b) the reduction in Pto2 is probably due to reduced blood flow which is, in turn, caused partly, at least, by sympathetic nervous system activity; c) O2 content, rather than Po2, may determine chemoreceptor discharge rate; and d) there are no barriers in the CB which are impermeable to O2. 相似文献