首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crosbie  Julie  Longnecker  Nancy  Davies  Fleur  Robson  Alan 《Plant and Soil》1993,(1):449-452
Seed of narrow-leafed lupin (Lupinus angustifolius L.) produced in Western Australia often has low manganese (Mn) concentration because of low Mn availability in the soil during grain filling. A major problem of lupin production is poor seedling establishment. We tested the hypothesis that low Mn concentration in lupin seeds decreases emergence.The experiment was a factorial design comparing emergence of lupins (cv. Gungurru) grown under glasshouse conditions from seed with 2 different internal Mn concentrations (7 or 35 mg Mn kg–1 DW) and with 2 external Mn fertiliser treatments (0 or 10 mg MnSO4.H2O kg–1 soil). There were no visible differences between the seeds. Emergence was monitored and plants were harvested 17 days after sowing.Emergence was approximately 60% in all pots sown with low Mn compared to 100% in pots sown with high Mn seed. Application of Mn did not increase the final emergence of low Mn seed. Seed viability was assessed by staining with tetrazolium chloride, a common test used in seed testing laboratories. All high Mn seed were viable while 34% of low Mn seed were completely or partly unstained and therefore were non-viable. We have shown that low Mn supply during seed filling may lead to production of non-viable seed that cannot be visually distinguished from viable seed..  相似文献   

2.
Gremigni  P.  Wong  M. T. F.  Edwards  N. K.  Harris  D.  Hamblin  J. 《Plant and Soil》2001,234(1):131-142
To ensure that narrow-leafed lupin (Lupinus angustifolius L.) meets feed quality standards, the concentration of alkaloids must be kept under the maximum acceptable limit of 200 mg kg–1 DM. One of the factors that may affect seed alkaloid concentration is soil nutrient deficiency. In this paper, we report the results of glasshouse and field experiments that tested the effect of potassium (K) deficiency on seed alkaloid concentrations. In the glasshouse, seed alkaloid concentrations increased by 385, 400 and 205% under severe K deficiency in sweet varieties (Danja, Gungurru and Yorrel, respectively) of L. angustifolius. The concentration of alkaloids in Fest, the bitter variety, was always high regardless of soil K status. At all levels of applied K (0–240 mg kg–1 soil), lupanine was the predominant alkaloid in sweet varieties, whereas 13-hydroxylupanine prevailed in the bitter variety. Seed yield of all varieties increased exponentially with increasing amounts of applied K, reaching a maximum at 60 mg K kg–1 soil. In the field, application of K to deficient soils decreased seed alkaloid concentration at Badgingarra, Western Australia (WA) but not at Nyabing, WA, in 1996. In both field trials, seed yield and mineral content were not affected by the amounts of K fertiliser applied. These findings highlighted the need for adequate K fertilisation of deficient soils in WA to avoid the risk of producing low quality lupin seed with high alkaloid concentrations. K deficiency is involved in stimulating alkaloid production in sweet varieties of L. angustifolius.  相似文献   

3.
Seed of flax (Linum usitatissimum L.) grown on calcareous and neutral soils sometimes accumulates relatively high concentrations of Cd. The influence of a post-flowering application of NH4NO3 (115 mg N kg-1), CdSO4 (1 mg Cd kg-1), FeEDDHA (2 mg Fe kg-1), NaH2PO4 (120 mg P kg-1) and ZnSO4 (8 mg Zn kg-1) on seed accumulation of Cd, Fe, N, Mn, P and Zn by flax grown on a Calciaquoll was studied in two experiments under greenhouse conditions. Seed yields were increased by the N and Zn treatments, and the N×Zn interaction was positive. Zinc deficiency delayed flowering and boll formation by up to 20 days and reduced seed size. In the absence of added Cd, seed accumulated up to 0.33 mg Cd kg-1. This Cd accumulation was reduced by approximately 50 and 17% by added Zn and Fe, respectively, but was little affected by P fertilizer and post-flowering N stress. In the presence of added Cd, seed Cd exceeded 3.3 mg Cd kg-1, and the antagonistic effects of Fe and Zn on seed Cd were absent. Seed N, P, Fe and Zn concentrations were increased on average by 10, 45, 31 and 97% by the N, P, Fe and Zn fertilizer treatments, respectively. FeEDDHA reduced seed Mn concentration by approximately 58%. However, seed Mn concentration was much less than that found in vegetative tissue at flowering. Soil-applied Zn may reduce seed Cd concentration in flax under field conditions, and may increase marketability of flax for food use.  相似文献   

4.
The influence of FeEDDHA (0, 0.2 and 2 μg Fe g−1 soil) and NaH2PO4·H2O (0 and 120 μg Pg−1 soil) on the growth of two Fe-ineffective soybean (Glycine max L. Merr.) varieties (anoka and T203) on a calcareous soil at two soil temperatures (16 and 24°C) was compared under greenhouse conditions. The two soybean varieties differed in the following respects: (a) T203 accumulated smaller concentrations of Fe in washed tops than Anoka under comparable conditions; (b) T203 was more susceptible to Fe deficiency and its accentuation by high levels of fertilizer P than Anoka; (c) T203 accumulated lower quantities of Mn in tops than Anoka under comparable conditions; (d) T203, but not Anoka, developed Mn deficiency symptoms when treated with P and 2 μg Fe g−1 at 16°C. Fe deficiency was more severe in both varieties at the higher soil temperature due apparently to: (a) greater plant concentration of P in tops at 24°C; and/or (b) an increased rate of plant growth and greater dilution of Fe in young tissue at 24°C. Foliar P concentration was increased much more than foliar Fe concentration by an increase in soil temperature. Severely Fe deficient T203 plants grown without FeEDDHA at 24°C accumulated less foliar Mn than their FeEDDHA counterparts. Comparisons of Fe effectiveness of various soybean cultivars based on relative responses to FeEDDHA can be influenced by differential effects on Mn nutrition.  相似文献   

5.
Zhao  F. J.  Wood  A. P.  McGrath  S. P. 《Plant and Soil》1999,212(2):207-217
A S-deficient soil was used in pot experiments to investigate the effects of S addition on growth and N2-fixation in pea (Pisum sativum L.). Addition of 100 mg S pot−1 increased seed yield by more than 2-fold. Numbers of pods formed were the most sensitive yield component affected by S deficiency. Sulphur addition also increased the concentration of N in leaves and stems, and the total content of N in the shoots. The amounts of N fixed by pea were determined at four growth stages from stem elongation to maturity, using the 15N dilution technique. Sulphur addition doubled the amount of N fixed at all growth stages. In contrast, leaf chlorophyll content and shoot dry weight were increased significantly by S addition only after the flowering and pod fill stage, respectively. Pea roots were found to have high concentrations of S, reaching approximately 10 mg g−1 dry weight and being 2.6–4.4 times the S concentration in the shoots under S-sufficient conditions. These results suggest that roots/nodules of pea have a high demand for S, and that N2-fixation is very sensitive to S deficiency. The effects of S deficiency on pea growth were likely to be caused by the shortage of N, due to decreased N2-fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Sadana  U.S.  Claassen  N. 《Plant and Soil》2000,218(1-2):233-238
Understanding of the mechanisms of Mn supply from the soil and uptake by the plants can be improved by using simulation models that are based on basic principles. For this, a pot culture experiment was conducted with a sandy clay loam soil to measure Mn uptake by summer wheat (Triticum aestivum L. cv. Planet), maize (Zea mays L. cv. Pirat) and sugar beet (Beta vulgaris L. cv. Orbis) and to simulate Mn dynamics in the rhizosphere by means of a mechanistic model. Seeds of three crops were sown in pots containing 2.9 kg soil in a controlled growth chamber. Root and shoot weight, Mn content of plants, root length and root radius were determined 8 (13 days in case of sugar beet) and 20 days after germination. Soil and plant parameters were determined to run nutrient uptake model calculations. Manganese content of the shoot varied from 25 mg kg-1 for sugar beet to 34 mg kg-1 for maize. Sugar beet had the lowest root length/shoot weight ratio but the highest relative shoot growth rate, resulting in the highest shoot demand on the root. This is reflected by the Mn influx which was 0.9 × 10-7, 1.7 × 10-7 and 2.5 × 10-7 nmol cm-1 s-1 for wheat, maize and sugar beet, respectively. Nutrient uptake model calculations predicted similar influx values. Initial Mn concentration of 0.2 μM in the soil solution decreased to only 0.16 μM for wheat, 0.13 μM for maize and 0.11 μM for sugar beet at the root surface. This shows that manganese transport to the root was not a limiting step. This was confirmed by the fact that an assumed 20 times increase in maximum influx (Imax) increased the calculated Mn influx by 3.7 times. Sensitivity analysis demonstrated that for controlling Mn uptake the initial soil solution concentration (C Li), the root radius (r0), Imax and the Michaelis constant (K m) were the most sensitive factors in the listed order. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
In 1981 a two-year field plot experiment was established to assess the effects of quantities (0, 7.5, 15, 30, 60 and 120 t ha−1) of fresh kelp (Macrocystis integrifolia) on crop growth and nutritional response and chemical properties of a fine-textured soil. Soil was analyzed for NO3−N, NH4−N, electrical conductivity, pH, Cl and exchangeable cations (K, Mg, Ca, Mn and Na). The plots were planted to beans (Phaseolus vulgaris) in the first year and peas (Pisum sativum) in the second year. Marketable bean yields increased in the first year with kelp applications up to 60 t ha−1, with yields, emergence and flowering being reduced by the 120 t ha−1 application. Soluble salts (EC) and Cl concentrations in the soil eight days after application increased linearly and sharply with increasing quantities of kelp. Increased K concentration and moisture content, characteristics of plants growing in a salt-stressed soil environment, were measured. A subsequent companion greenhouse experiment confirmed that the reduced bean emergence and growth with 120 t ha−1 applications of kelp were primarily due to soluble salts. The only growth effects upon peas in the second year was a slight reduction in leaf plus stem yields with increasing applications of kelp.  相似文献   

8.
Summary Nitrification was studied in a Leefield sand, sufficiently low in Mn to produce severe Mn deficiency in soybeans. The soil was treated with 100 g/g NH4 +-N, 0, 10, 100 and 1000 g/g Mn, and incubated at field capacity for six weeks at 30°C. Weekly determinations of (NO3 -+NO2 -)-N and NH4 +-N revealed that nitrification was not increased above the control level by any of the Mn rates. In the control, the decrease in soil pH associated with nitrification caused an increase in extractable Mn from 0.12 to 1.56 g/g during the experimental period. The 1000 g/g rate of Mn completely inhibited nitrification for the first five weeks of the experiment, but nitrification began to occur during the sixth (last) week. It is postulated that Mn was being converted to unavailable forms such that by the sixth week the level of active Mn had been reduced sufficiently to permit nitrification to begin. re]19760512  相似文献   

9.
Importance of seed Zn content for wheat growth on Zn-deficient soil   总被引:10,自引:2,他引:8  
Seed nutrient reserves may be important for an early establishment of crops on low-fertility soils. This glasshouse pot study evaluated effects of seed Zn content on vegetative growth of two wheat (Triticum aestivum L.) genotypes differing in Zn efficiency. Low-Zn (around 250 ng Zn per seed) and high-Zn seed (around 700 ng Zn per seed on average) of Excalibur (Zn efficient) and Gatcher (Zn inefficient) wheats were sown in a Zn-deficient siliceous sand fertilised with 0, 0.05, 0.2, 0.8 or 3.2 mg Zn kg-1 soil. After 3 weeks, plants derived from the high-Zn seed had better root and shoot growth; the cv. Excalibur accumulated more shoot dry matter than the cv. Gatcher. After 6 weeks, greater root and shoot growth of plants grown from the high-Zn seed compared to those from the low-Zn seed was obvious only at nil Zn fertilisation. A fertilisation rate of 0.2 mg Zn kg-1 soil was required for achieving 90% of the maximum yield for plants grown from the high-Zn seed compared to 0.8 mg Zn kg-1 soil for plants derived from the low Zn seed. The critical Zn level in youngest expanded leaves for 90% maximum yield was 16 mg Zn kg-1 dry matter for both genotypes. Zn-efficient Excalibur had greater net Zn uptake rates compared to Zn-inefficient Gatcher after 3 weeks but they were not different at the 6-week harvest. Zinc-deficient plants had greater net uptake rates of Cu, Mn, B, P, and K but a reduced uptake rate of Fe. It is concluded that higher seed Zn content acted similar to a starter-fertiliser effect by improving vegetative growth and dissipating differences in Zn efficiency of wheat genotypes.  相似文献   

10.
Brassica rapa L. is an important vegetable crop in eastern Asia. The objective of this study was to investigate the genetic variation in leaf Zn, Fe and Mn accumulation, Zn toxicity tolerance and Zn efficiency in B. rapa. In total 188 accessions were screened for their Zn-related characteristics in hydroponic culture. In experiment 1, mineral assays on 111 accessions grown under sufficient Zn supply (2 μM ZnSO4) revealed a variation range of 23.2–155.9 μg g−1 dry weight (d. wt.) for Zn, 60.3–350.1 μg g−1 d. wt. for Fe and 20.9–53.3 μg g−1 d. wt. for the Mn concentration in shoot. The investigation of tolerance to excessive Zn (800 μM ZnSO4) on 158 accessions, by using visual toxicity symptom parameters (TSPs), identified different levels of tolerance in B. rapa. In experiment 2, a selected sub-set of accessions from experiment 1 was characterized in more detail for their mineral accumulation and tolerance to excessive Zn supply (100 μM and 300 μM ZnSO4). In this experiment Zn tolerance (ZT) determined by relative root or shoot dry biomass varied about 2-fold. The same six accessions were also examined for Zn efficiency, determined as relative growth under 0 μM ZnSO4 compared to 2 μM ZnSO4. Zn efficiency varied 1.8-fold based on shoot dry biomass and 2.6-fold variation based on root dry biomass. Zn accumulation was strongly correlated with Mn and Fe accumulation both under sufficient and deficient Zn supply. In conclusion, there is substantial variation for Zn accumulation, Zn toxicity tolerance and Zn efficiency in Brassica rapa L., which would allow selective breeding for these traits.  相似文献   

11.
The influence of various nitrogen (N) and sulphur (S) forms on the uptake of manganese (Mn) in young spring barley (Hordeum vulgare L cv Golf) plants was examined in both a hydroponic system and in a soil-based system. The soil was a typical Danish Mn-deficient soil viz. a sandy loam soil developed on old marine sediments. Plants growing in solution culture with NO3 as the only N source had a higher Mn uptake than plants receiving mixtures of NO3 and NH4+. These findings were opposite to the results obtained in the soil-based experiments, where plants fertilized with NO3 as the only N source accumulated much less Mn than plants fertilized with NH4+. Combining the results of these experiments confirmed that NH4+ acted as a powerful antagonist to Mn2+ during uptake but that this antagonistic effect was more than compensated for by the influence of NH4+ in reducing plant-unavailable Mn(IV) to plant-available Mn(II) in the soil. Furthermore the soil experiments showed that fertilizers containing sulphur in the form of reduced S (thiosulphate) had a strong mobilizing effect on Mn, and enabled the plants to accumulate large amounts of Mn in the biomass compared with oxidized S (sulphate). Thus, fertilization with thiosulphate may be very effective in alleviating Mn-deficiency in soils developed on old marine sediments where Mn availability is limiting plant growth.  相似文献   

12.
文峪河上游华北落叶松林的种子雨、种子库与幼苗更新   总被引:1,自引:0,他引:1  
高润梅  石晓东  郭跃东  樊兰英 《生态学报》2015,35(11):3588-3597
华北落叶松林下更新不良,为探究其制约因素,开展了山西省文峪河上游5个华北落叶松林分的种子雨、土壤种子库和幼苗更新的研究。结果表明:(1)华北落叶松种子主要集中于9—10月散落。2011年为华北落叶松种子丰年:种子产量高,种子雨密度达(961.93±377.40)粒/m2;种子质量高,完整种子占(89.31±16.13)%。2012年为种子平年,种子产量低,种子雨密度为(252.73±115.12)粒/m2。华北落叶松种子雨主要源于毗邻树木,华北落叶松纯林和落叶松云杉林的种子雨密度显著高于其他3个针阔混交林。(2)土壤种子库主要由上年种子雨组成,2012年4月的土壤种子库密度为(695.18±297.23)粒/m2,完整种子占(59.73±9.56)%。种子自然萌发前,约(78.98±24.76)粒/m2具发芽力,基本可满足更新需要。但种子活力保持期少于2 a,只能形成短期持久土壤种子库。(3)华北落叶松更新不良,种子年后仍难以实现幼苗建成,当年生幼苗的出现频度平均为1.6%,且林下难以存活。幼苗发生与种子储量关联性不强,种源条件不是制约华北落叶松更新的主要因素。  相似文献   

13.
Summary Greenhouse and laboratory studies were conducted to study the effect of zinc sources and methods of application on correcting zinc deficiency in flooded rice grown on Vertisol from Ngala, northern Nigeria, using the variety IR-20.Plant dry matter yield was similar for ZnSO4, ZnEDTA, metallic Zn and fritted Zn with mixed soil application. Zinc uptake was affected in the following order; ZnSO4 > ZnEDTA > metallic Zn > fritted Zn. Comparable dry matter yield and zinc uptake were obtained with mixing, surface broadcasting and banding of ZnEDTA. Mixing the fritted Zn gave higher dry matter yield and zinc uptake than broadcasting or banding.Seed soaking with a suspension of fritted Zn resulted in higher dry matter yield and zinc uptake than with ZnEDTA solution. Seed soaking for 24 hours with fritted Zn suspension at a concentration of about 0.5 per cent Zn appeared to be a suitable method for applying zinc with direct seeded rice.  相似文献   

14.
Field research was conducted on four Atlantic Coastal Plain soils in the United States to evaluate response of corn (Zea mays L.) plants to Mn application. The soils under study were classified as either Aeric or Typic Ochraquults. Manganese application increased corn grain yields by an average of 1195 kg ha–1 on the four soils. The average grain yields on the soils were 7955 kg ha–1 for the control and 9150 kg ha–1 for the +Mn treatment. A Mitscherlich plant growth model was used to establish relationships between percent maximum grain yield and Mn concentration in the ear leaf at early silk (r=0.87, =0.01) and in the mature grain (r=0.58, =0.01). Based on 90% of maximum yield as the definition of the critical deficiency level, the critical Mn deficiency levels calculated with parameters from the Mitscherlich model were 10.6 mg kg–1 in the ear leaf and 4.9 mg kg–1 in the grain.  相似文献   

15.
Seed size and weight are important criteria for determining seedling vigour and stand establishment. Evolution of seed dry weight of wheat (Triticum aestivum L.) during germination and early growth was examined because poor stands are often associated with the depletion and exhaustion of seed reserves. Two laboratory experiments were conducted on filter paper and in soil at three water potentials using wheat seeds. Seed, root, and shoot dry weights were recorded at approximately one-day intervals. Coleoptile and first leaf lengths were also measured at all sampling periods. Wheat seedlings grown on filter paper in the dark grew to a length of 90 to 100 mm with 50% of the initial seed weight remaining after eight days when the experiment was terminated. In soil, wheat seedlings grew 15 mm with 25% of the initial seed weight remaining. Seed reserves were depleted more quickly when the soil was wet because seedlings grew more quickly. There were significant and similar negative relationships between seed weight and coleoptile length of wheat seedlings grown on filter paper and in soil. There was no effect of soil water potential on the relationship between seed weight and shoot length. Therefore, it was concluded that poor wheat stands are not likely to occur due to depletion of seed reserves under field conditions without mechanical obstacles.  相似文献   

16.
Successful revegetation of bauxite residue sand (BRS) requires large inputs of nutrients such as manganese (Mn), yet Mn deficiency is still encountered, raising doubts about sustainable revegetation of BRS disposal areas. The application of deep placement of Mn, a measure common in agriculture, was examined as a method for improving productivity and sustainability when lucerne (Medicago sativa L.) is used as a species for BRS revegetation. In pots containing BRS, Mn was banded at 2.5-, 10- and 20-cm depths at rates of 10, 20 and 50 g g–1 BRS. Two lucerne genotypes used were Salado, a Mn-deficiency-tolerant variety, and Sirosal, a Mn-deficiency-sensitive variety. Banding at 10-cm depth produced the best shoot growth of Sirosal at each Mn rate. Greatest shoot growth in Salado was found at 2.5-, 10- and 20-cm depths for 10, 20 and 50 g Mn g–1 BRS, respectively. Deep banding 20 g Mn g–1 BRS at 10-cm depth significantly increased lucerne growth compared with mixing through the profile. Banding at 20 cm produced Mn deficiency symptoms in lucerne during early growth, but symptoms were alleviated when sufficient amounts of roots proliferated in the banding zone. Dissolution and movement of Mn away from the fertiliser band were also investigated. In pots without plants, water throughput from watering twice weekly to 110% field capacity had no effect on the amount of extractable Mn at distances more than 1 cm away from the original Mn band position. Whilst not only providing a more effective supply of Mn for BRS revegetation over one growth period, deep-banding of adequate rates of Mn may also result in a longer residual value, reducing the need for frequent broadcast applications.  相似文献   

17.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Improving the performance of transplanted rice by seed priming   总被引:1,自引:0,他引:1  
Transplanting is the major method of rice cultivation in the world, in which seedlings are raised in nursery and then transplanted into well puddle and prepared fields. The traditional nursery sowing method is tedious and produces week seedlings that reduce the final yield due to high mortality. The potential of seed priming to improve the nursery seedlings and thus the transplanted rice was evaluated in the present study. The experiment was conducted in the rice growing area (31.45° N, 73.26° E, and 193 m) of Pakistan, during 2004–2005. Seed priming tools employed during the investigation included traditional soaking, hydropriming for 48 h, osmohardening with KCl or CaCl2s −1.25 MPa) for 24 h (one cycle), 10 ppm ascorbate for 48 h or seed hardening for 24 h. Priming improved the initial seedling vigor and resulted in improved growth, yield and quality of transplanted fine rice while traditional soaking behaved similar to that of untreated control. Osmohardening with CaCl2 resulted in the best performance, followed by hardening, ascorbate priming and osmohardening with KCl. Osmohardening with CaCl2 produced 3.75 t ha−1 (control: 2.87 t ha−1) kernel yield, 11.40 t ha−1 (control: 10.03 t ha−1) straw yield and 24.57% (control: 22.27%) harvest index. The improved yield was attributed due to increase in the number of fertile tillers. Significant positive correlation was found between mean emergence time of nursery seedlings and kernel yield, nursery seedling dry weight and kernel yield, fertile tillers and kernel yield, and leaf area duration and kernel yield.  相似文献   

19.
A manipulated increase in acid deposition (15 kg S ha−1), carried out for three months in a mature Scots pine (Pinus sylvestris) stand on a podzol, acidified the soil and raised dissolved Al at concentrations above the critical level of 5 mg l−1 previously determined in a controlled experiment with Scots pine seedlings. The induced soil acidification reduced tree fine root density and biomass significantly in the top 15 cm of soil in the field. The results suggested that the reduction in fine root growth was a response not simply to high Al in solution but to the depletion of exchangeable Ca and Mg in the organic layer, K deficiency, the increase in NH4:NO3 ratio in solution and the high proton input to the soil by the acid manipulation. The results from this study could not justify the hypothesis of Al-induced root damage under field conditions, at least not in the short term. However, the study suggests that a short exposure to soil acidity may affect the fine root growth of mature Scots pine.  相似文献   

20.
The retranslocation of Mn from pools of pre-accumulation todeveloping seed of Lupinus angustifolius was examined in growthchamber and field experiments. In the growth chamber experiment, plants (cv. Illyarrie) weregrown in sand containing Mn at 18 levels of supply from low(15 fig Mn kg"1) to luxury (12800 fig Mn kg{small tilde}l).At 90 d, sand was washed from the roots and the plants weregrown to maturity in nutrient solution in the absence of Mn.At sequential harvests, the plants were divided into a numberof fractions and were analysed for Mn to determine changes inthe amount of Mn contained in each component. Plants (cv. Marri)were also grown in the field at a Mn deficient site with andwithout added Mn, and similar harvests and observations weremade. Manganese moved readily from roots, stems and petioles to developingsinks, including seeds via pods. Retranslocation of Mn preventedthe appearance of Mn deficient seed (‘split seed’)in plants which had accumulated sufficient Mn prior to the omissionof Mn supply. The mode of Mn transport is discussed, and itsconveyance to seed in phloem, mediated by transfer cells, issuggested. The identification of pools of Mn accumulation fromwhich Mn may retranslocate presents a basis on which tests prognosticof impending Mn deficiency in maturing lupins may be developed.Stem is favoured as the tissue on which to base such tests. No Mn translocated to developing seed sinks from mature, oreven senescing lupin leaves. The cause appears to be that Mnis poorly loaded into the phloem of leaves although much wasfound to be leachable. About 40 per cent of leaf Mn was extractablewith water, more (approx. 70 per cent) with dilute ethylenediamine tetraacen’c acid but little (approx. 14 per cent)with N7>Jdimethyl formamide along with other cell contents.The form of Mn in leaves is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号