首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Dysregulation of the alternative pathway (AP) of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112) and controls (n = 67). Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH), factor B-C2 (BF-C2) and complement C3 (C3) genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001), were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.  相似文献   

2.

Background

There is absence of specific biomarkers and an incomplete understanding of the pathophysiology of exudative age-related macular degeneration (AMD).

Methods and Findings

Eighty-eight vitreous samples (73 from patients with treatment naïve AMD and 15 control samples from patients with idiopathic floaters) were analyzed with capillary electrophoresis coupled to mass spectrometry in this retrospective case series to define potential candidate protein markers of AMD. Nineteen proteins were found to be upregulated in vitreous of AMD patients. Most of the proteins were plasma derived and involved in biological (ion) transport, acute phase inflammatory reaction, and blood coagulation. A number of proteins have not been previously associated to AMD including alpha-1-antitrypsin, fibrinogen alpha chain and prostaglandin H2-D isomerase. Alpha-1-antitrypsin was validated in vitreous of an independent set of AMD patients using Western blot analysis. Further systems biology analysis of the data indicated that the observed proteomic changes may reflect upregulation of immune response and complement activity.

Conclusions

Proteome analysis of vitreous samples from patients with AMD, which underwent an intravitreal combination therapy including a core vitrectomy, steroids and bevacizumab, revealed apparent AMD-specific proteomic changes. The identified AMD-associated proteins provide some insight into the pathophysiological changes associated with AMD.  相似文献   

3.
Age-related macular degeneration (AMD) is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch''s membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the cell biology that leads to the formation of drusen. We have previously demonstrated increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we found that drusen in AMD donor eyes contain markers for autophagy and exosomes. Furthermore, these markers are also found in the region of Bruch''s membrane in old mice. By in vitro modeling increased mtDNA damage induced by rotenone, an inhibitor of mitochondrial complex I, in the RPE, we found that the phagocytic activity was not altered but that there were: 1) increased autophagic markers, 2) decreased lysosomal activity, 3) increased exocytotic activity and 4) release of chemoattractants. Exosomes released by the stressed RPE are coated with complement and can bind complement factor H, mutations of which are associated with AMD. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients and may be associated with the pathogenesis of AMD in the elderly.  相似文献   

4.
Uncontrolled activation of the alternative pathway of complement is thought to be associated with age-related macular degeneration (AMD). The alternative pathway is continuously activated in the fluid phase, and tissue surfaces require continuous complement inhibition to prevent spontaneous autologous tissue injury. Here, we examined the effects of oxidative stress on the ability of immortalized human retinal pigment epithelial cells (ARPE-19) to regulate complement activation on their cell surface. Combined treatment with H2O2 (to induce oxidative stress) and complement-sufficient serum was found to disrupt the barrier function of stable ARPE-19 monolayers as determined by transepithelial resistance (TER) measurements. Neither treatment alone had any effect. TER reduction was correlated with increased cell surface deposition of C3, and could be prevented by using C7-depleted serum, an essential component of the terminal complement pathway. Treatment with H2O2 reduced surface expression of the complement inhibitors DAF, CD55, and CD59, and impaired regulation at the cell surface by factor H present within the serum. Combined treatment of the monolayers with H2O2 and serum elicited polarized secretion of vascular epidermal growth factor (VEGF). Both, secretion of VEGF and TER reduction could be attenuated using either an alternative pathway inhibitor or by blocking VEGF receptor-1/2 signaling. Regarded together, these studies demonstrate that oxidative stress reduces regulation of complement on the surface of ARPE-19 cells, increasing complement activation. This sublytic activation results in VEGF release, which mediates disruption of the cell monolayer. These findings link oxidative stress, complement activation, and apical VEGF release, which have all been associated with the pathogenesis of AMD.Age-related macular degeneration (AMD)6 is the leading cause of blindness in the elderly (1). Clinically, AMD is categorized as “dry” or “wet.” In the dry form of the disease, deposits (drusen) develop between the retinal pigment epithelium (RPE) and the underlying basement membrane (Bruch''s membrane). The loss of photoreceptor function and vision observed in patients is attributed to atrophic changes in the RPE (1, 2). Wet AMD is characterized by choroidal neovascularization extending through Bruch''s membrane and the RPE into the subretinal space. Subsequent leakage of exudative fluid and blood is thought to contribute to the eventual development of fibrosis characteristic of wet AMD. AMD is hypothesized to be a progressive disease, with the dry and wet forms likely representing different points on a spectrum of disease severity. Approximately 10–15% of patients with the less severe dry AMD go on to develop wet AMD (1).Several observations suggest that uncontrolled activation of the complement cascade contributes to the development and progression of AMD. Polymorphisms in complement factor H, a circulating inhibitor of the alternative pathway of complement, are strongly associated with the development of AMD (36). Drusen-like lesions also develop in patients with dense deposit disease, a form of glomerulonephritis caused by dysregulation of the alternative pathway (7, 8). Analysis of the composition of drusen demonstrates that they contain important complement proteins, including C3, C5, membrane attack complex (MAC), and endogenous complement regulatory proteins (7, 8). Mice with a genetic deletion of factor H (cfh−/− mice) accumulate C3 throughout the RPE and the outer segment layer of the neuroretina, and lose visual function faster during aging than their wild type littermates (9). Furthermore, in a murine model of laser-induced choroidal neovascularization, blockade of signaling by C3a and C5a reduced the production of VEGF in the eye and reduced neovascularization (10). Taken together, these studies suggest that in AMD, inadequate control of the alternative pathway 1) contributes to the structural changes observed in RPE and Bruch''s membrane, including drusen formation; and 2) is upstream of VEGF-mediated mechanisms.The alternative pathway of complement is continually activated in the fluid phase, and inadequate inhibition of this pathway on tissue surfaces may permit spontaneous complement activation with rapid amplification and generation of pro-inflammatory activation fragments (11). In late-onset diseases such as AMD, local regulation of the alternative pathway may gradually be overwhelmed by cellular injury or the accumulation of debris (12, 13). Several environmental factors contribute to a high level of oxidative stress at the RPE layer, and oxidative injury of the RPE cells may be an important cause of AMD (14). Therefore, we hypothesized that oxidative stress may impair the ability of the RPE to regulate complement on its surface. In the intact adult human eye, only one cell surface complement inhibitor, membrane cofactor protein (MCP; CD46), has been identified on RPE cells (15). In the current study, we investigated whether ARPE-19 cells express the three cell surface complement inhibitors, CD46, decay accelerating factor (DAF; CD55), and CD59; and whether oxidative stress of RPE cells in culture alters surface expression of the complement inhibitory proteins or reduces inhibition of the alternative pathway on the surface of the cells by factor H. Second, we tested the hypothesis that rather than causing cell lysis, sublytic activation of complement on RPE cells induces VEGF release by these cells, which is known to compromise barrier function. The goal of these studies was to construct a model whereby oxidative stress in the eye could be linked to the inflammatory events that cause AMD, including uncontrolled activation of complement.  相似文献   

5.
The discovery of strong associations of the His402 variant of complement factor H (CFH) and the change in the promoter region of HtrA serine peptidase 1 (HTRA1) with age-related macular degeneration (AMD) have altered our conception of the pathophysiology of this disease. The complement system has been placed at the center of a flurry of research interest, and a similar growth in attention to the serine proteases is not far behind. The specific role of these variants in causing AMD is unknown, but they will undoubtedly lead to a deeper understanding of the biological mechanisms and will point to new avenues for pharmacologic management. Furthermore, these variants will enable clinicians and investigators to identify people at high risk for this condition, thereby establishing the preconditions for preventing the disease.  相似文献   

6.
Age-related macular degeneration (AMD) is a progressive disease and major cause of severe visual loss. Toward the discovery of tools for early identification of AMD susceptibility, we evaluated the combined predictive capability of proteomic and genomic AMD biomarkers. We quantified plasma carboxyethylpyrrole (CEP) oxidative protein modifications and CEP autoantibodies by ELISA in 916 AMD and 488 control donors. CEP adducts are uniquely generated from oxidation of docosahexaenoate-containing lipids that are abundant in the retina. Mean CEP adduct and autoantibody levels were found to be elevated in AMD plasma by ∼60 and ∼30%, respectively. The odds ratio for both CEP markers elevated was 3-fold greater or more in AMD than in control patients. Genotyping was performed for AMD risk polymorphisms associated with age-related maculopathy susceptibility 2 (ARMS2), high temperature requirement factor A1 (HTRA1), complement factor H, and complement C3, and the risk of AMD was predicted based on genotype alone or in combination with the CEP markers. The AMD risk predicted for those exhibiting elevated CEP markers and risk genotypes was 2–3-fold greater than the risk based on genotype alone. AMD donors carrying the ARMS2 and HTRA1 risk alleles were the most likely to exhibit elevated CEP markers. The results compellingly demonstrate higher mean CEP marker levels in AMD plasma over a broad age range. Receiver operating characteristic curves suggest that CEP markers alone can discriminate between AMD and control plasma donors with ∼76% accuracy and in combination with genomic markers provide up to ∼80% discrimination accuracy. Plasma CEP marker levels were altered slightly by several demographic and health factors that warrant further study. We conclude that CEP plasma biomarkers, particularly in combination with genomic markers, offer a potential early warning system for assessing susceptibility to this blinding, multifactorial disease.Age-related macular degeneration (AMD)1 is the most common cause of legal blindness in the elderly in developed countries (1). It is a complex, progressive disease involving multiple genetic and environmental factors that can result in severe visual loss. Early risk factors include the macular deposition of debris (drusen) on Bruch membrane, the extracellular matrix separating the choriocapillaris from the retinal pigment epithelium (RPE). Later stages of “dry” AMD involve the degeneration of photoreceptor and RPE cells resulting in geographic atrophy. In “wet” AMD, abnormal blood vessels grow from the choriocapillaris through Bruch membrane (choroidal neovascularization (CNV)). CNV occurs in 10–15% of AMD cases yet accounts for over 80% of debilitating visual loss in AMD. Anti-vascular endothelial growth factor treatments can effectively inhibit the progression of CNV (1), and antioxidant vitamins and zinc can slow dry AMD progression for select individuals (2). However, there are no universally effective therapies for the prevention of dry AMD or the progression from dry to wet AMD nor are there therapies to repair retinal damage in advanced AMD. The prevalence of advanced AMD in the United States is projected to increase by 50% to ∼3 million by the year 2020 largely because of the rapidly growing elderly population (3). Accordingly early identification of AMD susceptibility and implementation of preventive measures are important therapeutic strategies (1).The molecular mechanisms causing AMD remain unknown, although inflammatory processes have been implicated by the identification of AMD susceptibility genes encoding complement factors (410) and the presence of complement proteins in drusen (1113). Oxidative stress has long been associated with AMD pathology as shown by the finding that smoking significantly increases the risk of AMD (14) and that antioxidant vitamins can selectively slow AMD progression (2). A direct molecular link between oxidative damage and AMD was established by the finding that carboxyethylpyrrole (CEP), an oxidative protein modification generated from docosahexaenoate (DHA)-containing phospholipids, was elevated in Bruch membrane and drusen from AMD patients (11). Subsequently CEP adducts as well as CEP autoantibodies were found to be elevated in plasma from AMD donors (15), and CEP adducts were found to stimulate neovascularization in vivo, suggesting a role in the induction of CNV (16). From such observations, oxidative protein modifications were hypothesized to serve as catalysts of AMD pathology (11, 15, 17). In support of this hypothesis, mice immunized with CEP-adducted mouse albumin develop a dry AMD-like phenotype that includes sub-RPE deposits resembling drusen and RPE lesions mimicking geographic atrophy (18).Although identified AMD susceptibility genes account for over half of AMD cases (19), many individuals carrying AMD risk genotypes may never develop the disease. Likewise only a fraction of those diagnosed with early AMD progress to advanced stage disease with severe visual loss (2). Toward the discovery of better methods to predict susceptibility to advanced AMD, we quantified CEP adducts and autoantibodies in over 1400 plasma donors and also genotyped many of these donors for AMD risk polymorphisms in complement factor H (CFH) (47), complement C3 (9, 10), age-related maculopathy susceptibility 2 (ARMS2; also known as LOC387715) (1922), and high temperature requirement factor A1 (HTRA1) (23, 24). The results demonstrate that combined CEP proteomic and genomic biomarker measurements are more effective in assessing AMD risk than either method alone.  相似文献   

7.
The question as to why the macula of the retina is prone to an aging disease (age-related macular degeneration) remains unanswered. This unmet challenge has implications since AMD accounts for approximately 54% of blindness in the USA (Swaroop, Chew, Bowes Rickman and Abecasis, 2009). While AMD has onset in the elder years, it likely develops over time. Genetic discovery to date has accounted for approximately 50% of the inheritable component of AMD. The polymorphism that has been most widely studied is the Y402H allele in the complement factor H gene. The implication of this genetic association is that in a subset of AMD cases, unregulated complement activation is permissive for AMD. Given that this gene variant results in an amino acid substitution, it is assumed that this change will have functional consequences although the precise mechanisms are still unknown. Genetic predisposition is not the only factor however, since in this complex disease there is substantial evidence that lifestyle factors such as diet and smoking contribute to risk. Here we provide an overview of current knowledge with respect to factors involved in AMD pathogenesis. Interwoven with these issues is a discussion of the significant role played by aging processes, some of which are unique to the retina and retinal pigment epithelium. One recurring theme is the potential for disease promotion by diverse types of oxidation products.  相似文献   

8.
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. It has been proposed that the polymorphism encoding Y402H (T1277C) in the complement factor H gene (CFH) is one of the main determinants of disease. We genotyped the polymorphism at a number of loci in the region encompassing the Regulators of Complement Activation (RCA) on chromosome 1, including T1277C SNP, in 187 patients and 146 controls. Haplotypes have been classified as protective (P) or susceptible (S) with respect to AMD. This included the identification of an S haplotype with a T at 1277. The results show that no single locus should be assumed to be directly responsible for AMD, but rather argue for the existence of RCA haplotypes, which can be assigned meaningful predictive values for AMD. We conclude that the critical sequences are within a region 450 kb centromeric to 128 kb telomeric of CFH.  相似文献   

9.

Background

Age-related macular degeneration (AMD) is the major cause of blindness in the elderly. Those with the neovascular end-stage of disease have irreversible loss of central vision. AMD is a complex disorder in which genetic and environmental factors play a role. Polymorphisms in the complement factor H (CFH) gene, LOC387715, and the HTRA1 promoter are strongly associated with AMD. Smoking also contributes to the etiology. We aimed to provide a model of disease risk based on these factors.

Methods and Findings

We genotyped polymorphisms in CFH and LOC387715/HTRA1 in a case–control study of 401 patients with neovascular AMD and 266 controls without signs of disease, and used the data to produce genetic risk scores for the European-descent population based on haplotypes at these loci and smoking history. CFH and LOC387715/HTRA1 haplotypes and smoking status exerted large effects on AMD susceptibility, enabling risk scores to be generated with appropriate weighting of these three factors. Five common haplotypes of CFH conferred a range of odds ratios (ORs) per copy from 1 to 4.17. Most of the effect of LOC387715/HTRA1 was mediated through one detrimental haplotype (carriage of one copy: OR 2.83; 95% confidence interval [CI] 1.91–4.20), with homozygotes being at particularly high risk (OR 32.83; 95% CI 12.53–86.07). Patients with neovascular macular degeneration had considerably higher scores than those without disease, and risk of blinding AMD rose to 15.5% in the tenth of the population with highest predicted risk.

Conclusions

An individual''s risk of developing AMD in old age can be predicted by combining haplotype data with smoking status. Until there is effective treatment for AMD, encouragement to avoid smoking in those at high genetic risk may be the best option. We estimate that total absence of smoking would have reduced the prevalence of severe AMD by 33%. Unless smoking habits change or preventative treatment becomes available, the prevalence of AMD will rise as a consequence of the increasing longevity of the population.  相似文献   

10.
Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. AMD is a multifactorial disorder but complement-mediated inflammation at the level of the retina plays a pivotal role. Oral zinc supplementation can reduce the progression of AMD but the precise mechanism of this protective effect is as yet unclear. We investigated whether zinc supplementation directly affects the degree of complement activation in AMD and whether there is a relation between serum complement catabolism during zinc administration and the complement factor H (CFH) gene or the Age-Related Maculopathy susceptibility 2 (ARMS2) genotype. In this open-label clinical study, 72 randomly selected AMD patients in various stages of AMD received a daily supplement of 50 mg zinc sulphate and 1 mg cupric sulphate for three months. Serum complement catabolism–defined as the C3d/C3 ratio–was measured at baseline, throughout the three months of supplementation and after discontinuation of zinc administration. Additionally, downstream inhibition of complement catabolism was evaluated by measurement of anaphylatoxin C5a. Furthermore, we investigated the effect of zinc on complement activation in vitro. AMD patients with high levels of complement catabolism at baseline exhibited a steeper decline in serum complement activation (p<0.001) during the three month zinc supplementation period compared to patients with low complement levels. There was no significant association of change in complement catabolism and CFH and ARMS2 genotype. In vitro zinc sulphate directly inhibits complement catabolism in hemolytic assays and membrane attack complex (MAC) deposition on RPE cells. This study provides evidence that daily administration of 50 mg zinc sulphate can inhibit complement catabolism in AMD patients with increased complement activation. This could explain part of the mechanism by which zinc slows AMD progression.

Trial Registration

The Netherlands National Trial Register NTR2605  相似文献   

11.
Age-related macular degeneration (AMD) is a complex disorder of the central retina with readily increasing socio-economic impact on the societies of industrialized countries. With a prevalence of about 12% in the population over 80 years of age, advanced forms of AMD are nowadays the most common cause of blindness in the elderly. The risk of developing AMD is influenced by exogenous and endogenous factors. Although smoking is a well-established environmental component, the first clues to genetic influences resulted from twin studies and familial aggregation analyses. Recent work has identified genetic variants in two genomic regions at 1q32 and 10q26, which independently confer high risks for developing AMD. While association signals at 1q32 were shown to culminate over the complement factor H (CFH) gene, implicating innate immunity and inflammation in the etiology of AMD, the functional contribution of the LOC387715/HTRA1 (HtrA serine peptidase 1) gene locus still remains to be elucidated. In coming years it is to be expected, however, that our knowledge of the genetic factors and their cellular roles in the retina will further deepen and therefore will fundamentally change patient management.  相似文献   

12.
The results of recent studies have implicated local inflammation and complement activation as the processes involved in the pathogenesis of age-related macular degeneration (AMD). We have demonstrated that amyloid beta (Abeta), which is deposited in drusen, causes an imbalance in the angiogenesis-related factors in retinal pigment epithelial cells. We have also shown that neprilysin gene-disrupted mice accumulate Abeta, and develop several features of AMD. The purpose of this study was to investigate the mechanisms involved in the development of AMD that are triggered by Abeta. Our results showed that Abeta binds to complement factor I which inhibits the ability of factor I to cleave C3b to inactivated iC3b. Factor H and factor I are soluble complement-activation inhibitors, and preincubation of factor I with Abeta in the presence of factor H abolished the ability of Abeta to cleave C3b, and also abolished the ability of factor I to cleave FGR-AMC. In contrast, Abeta did not affect the function of factor H even after binding. The production of iC3b was significantly decreased when C3b and factor H were incubated with the eyes from neprilysin gene-disrupted mice as compared with when C3b and factor H were incubated with eyes from age-matched wild-type mice. These results suggest that Abeta activates the complement system within drusen by blocking the function of factor I leading to a low-grade, chronic inflammation in subretinal tissues. These findings link four factors that have been suggested to be associated with AMD: inflammation, complement activation, Abeta deposition, and drusen.  相似文献   

13.

Background

Age-related macular degeneration (AMD), a complex disease involving genetic variants and environmental insults, is among the leading causes of blindness in Western populations. Genetic and histologic evidence implicate the complement system in AMD pathogenesis; and smoking is the major environmental risk factor associated with increased disease risk. Although previous studies have demonstrated that cigarette smoke exposure (CE) causes retinal pigment epithelium (RPE) defects in mice, and smoking leads to complement activation in patients, it is unknown whether complement activation is causative in the development of CE pathology; and if so, which complement pathway is required.

Methods

Mice were exposed to cigarette smoke or clean, filtered air for 6 months. The effects of CE were analyzed in wildtype (WT) mice or mice without a functional complement alternative pathway (AP; CFB−/−) using molecular, histological, electrophysiological, and behavioral outcomes.

Results

CE in WT mice exhibited a significant reduction in function of both rods and cones as determined by electroretinography and contrast sensitivity measurements, concomitant with a thinning of the nuclear layers as measured by SD-OCT imaging and histology. Gene expression analyses suggested that alterations in both photoreceptors and RPE/choroid might contribute to the observed loss of function, and visualization of complement C3d deposition implies the RPE/Bruch''s membrane (BrM) complex as the target of AP activity. RPE/BrM alterations include an increase in mitochondrial size concomitant with an apical shift in mitochondrial distribution within the RPE and a thickening of BrM. CFB−/− mice were protected from developing these CE-mediated alterations.

Conclusions

Taken together, these findings provide clear evidence that ocular pathology generated in CE mice is dependent on complement activation and requires the AP. Identifying animal models with RPE/BrM damage and verifying which aspects of pathology are dependent upon complement activation is essential for developing novel complement-based treatment approaches for the treatment of AMD.  相似文献   

14.
Age-related macular degeneration (AMD) is a complex disorder of the eye and the third leading cause of blindness worldwide. With a multifactorial etiology, AMD results in progressive loss of central vision affecting the macular region of the eye in elderly. While the prevalence is relatively higher in the Caucasian populations, it has gradually become a major public health issue among the non-Caucasian populations (including Indians) as well due to senescence, rapidly changing demographics and life-style factors. Recent genome-wide association studies (GWAS) on large case-control cohorts have helped in mapping genes in the complement cascade that are involved in the regulation of innate immunity with AMD susceptibility. Genes involved with mitochondrial oxidative stress and extracellular matrix regulation also play a role in AMD pathogenesis. Majority of the associations observed in complement (CFH, CFB, C2 and C3) and other (ARMS2 and HTRA1) genes have been replicated in diverse populations worldwide. Gene-gene (CFH with ARMS2 and HTRA1) interactions and correlations with environmental traits (smoking and body mass index) have been established as significant covariates in AMD pathology. In this review, we have provided an overview on the underlying molecular genetic mechanisms in AMD worldwide and highlight the AMD-associated-candidate genes and their potential role in disease pathogenesis.  相似文献   

15.
16.
Age-related macular degeneration (AMD) is characterized by progressive loss of central vision, which is attributed to abnormal accumulation of macular deposits called "drusen" at the interface between the basal surface of the retinal pigment epithelium (RPE) and Bruch's membrane. In the most severe cases, drusen deposits are accompanied by the growth of new blood vessels that breach the RPE layer and invade photoreceptors. In this study, we hypothesized that RPE secreted proteins are responsible for drusen formation and choroidal neovascularization. We used stable isotope labeling by amino acids in cell culture (SILAC) in combination with LC-MS/MS analysis and ZoomQuant quantification to assess differential protein secretion by RPE cell cultures prepared from human autopsy eyes of AMD donors (diagnosed by histological examinations of the macula and genotyped for the Y402H-complement factor H variant) and age-matched healthy control donors. In general, RPE cells were found to secrete a variety of extracellular matrix proteins, complement factors, and protease inhibitors that have been reported to be major constituents of drusen (hallmark deposits in AMD). Interestingly, RPE cells from AMD donors secreted 2 to 3-fold more galectin 3 binding protein, fibronectin, clusterin, matrix metalloproteinase-2 and pigment epithelium derived factor than RPE cells from age-matched healthy donors. Conversely, secreted protein acidic and rich in cysteine (SPARC) was found to be down regulated by 2-fold in AMD RPE cells versus healthy RPE cells. Ingenuity pathway analysis grouped these differentially secreted proteins into two groups; those involved in tissue development and angiogenesis and those involved in complement regulation and protein aggregation such as clusterin. Overall, these data strongly suggest that RPE cells are involved in the biogenesis of drusen and the pathology of AMD.  相似文献   

17.

Purpose

Recently, a complement component 1 inhibitor (SERPING1) gene polymorphism was identified as a novel risk factor for age-related macular degeneration (AMD) in Caucasians. We aimed to investigate whether variations in SERPING1 are associated with typical AMD or with polypoidal choroidal vasculopathy (PCV) in a Japanese population.

Methods

We performed a case-control study in a group of Japanese patients with typical AMD (n = 401) or PCV (n = 510) and in 2 independent control groups—336 cataract patients without age-related maculopathy and 1,194 healthy Japanese individuals. Differences in the observed genotypic distribution between the case and control groups were tested using chi-square test for trend. Age and gender were adjusted using logistic regression analysis.

Results

We targeted rs2511989 as the haplotype-tagging single nucleotide polymorphism (SNP) for the SERPING1 gene, which was reported to be associated with the risk of AMD in Caucasians. Although we compared the genotypic distributions of rs2511989 in typical AMD and PCV patients against 2 independent control groups (cataract patients and healthy Japanese individuals), SERPING1 rs2511989 was not significantly associated with typical AMD (P = 0.932 and 0.513, respectively) or PCV (P = 0.505 and 0.141, respectively). After correction for age and gender differences based on a logistic regression model, the difference in genotypic distributions remained insignificant (P>0.05). Our sample size had a statistical power of more than 90% to detect an association of a risk allele with an odds ratio reported in the original studies for rs2511989 for developing AMD.

Conclusions

In the present study, we could not replicate the reported association between SERPING1 and either neovascular AMD or PCV in a Japanese population; thus, the results suggest that SERPING1 does not play a significant role in the risk of developing AMD or PCV in Japanese.  相似文献   

18.
Age-related macular degeneration (AMD) is a common condition among the elderly population that leads to the progressive central vision loss and serious compromise of quality of life for its sufferers. It is also one of the few disorders for whom the investigation of its genetics has yielded rich insights into its diversity and causality and holds the promise of enabling clinicians to provide better risk assessments for individuals as well as to develop and selectively deploy new therapeutics to either prevent or slow the development of disease and lessen the threat of vision loss. The genetics of AMD began initially with the appreciation of familial aggregation and increase risk and expanded with the initial association of APOE variants with the disease. The first major breakthroughs came with family-based linkage studies of affected (and discordant) sibs, which identified a number of genetic loci and led to the targeted search of the 1q31 and 10q26 loci for associated variants. Three of the initial four reports for the CFH variant, Y402H, were based on regional candidate searches, as were the two initial reports of the ARMS2/HTRA1 locus variants. Case-control association studies initially also played a role in discovering the major genetic variants for AMD, and the success of those early studies have been used to fuel enthusiasm for the methodology for a number of diseases. Until 2010, all of the subsequent genetic variants associated with AMD came from candidate gene testing based on the complement factor pathway. In 2010, several large-scale genome-wide association studies (GWAS) identified genes that had not been previously identified. Much of this historical information is available in a number of recent reviews (Chen et al., 2010b; Deangelis et al., 2011; Fafowora and Gorin, 2012b; Francis and Klein, 2011; Kokotas et al., 2011). Large meta analysis of AMD GWAS has added new loci and variants to this collection (Chen et al., 2010a; Kopplin et al., 2010; Yu et al., 2011). This paper will focus on the ongoing controversies that are confronting AMD genetics at this time, rather than attempting to summarize this field, which has exploded in the past 5 years.  相似文献   

19.
Age-related macular degeneration (AMD) is the most common cause of visual impairment among the elderly in developed countries, and its prevalence is thus increasing as the population ages; however, treatment options remain limited because the etiology and pathogenesis of AMD are incompletely defined. Recently, much progress has been made in gene discovery and mechanistic studies, which clearly indicate that AMD involves the interaction of multiple genetic and environmental factors. The identification of genes that have a substantial impact on the risk for AMD is not only facilitating the diagnosis and screening of populations at risk but is also elucidating key molecular pathways of pathogenesis. Pharmacogenetic studies of treatment responsiveness among patients with the "wet" form of AMD are increasingly proving to be clinically relevant; pharmacogenetic approaches hold great promise for both identifying patients with the best chance for vision recovery as well as tailoring individualized therapies.  相似文献   

20.
Molecular imaging is a relatively new discipline, which developed over the past decade, initially driven by in situ reporter imaging technology. Noninvasive in vivo molecular-genetic imaging developed more recently and is based on nuclear (positron emission tomography [PET], gamma camera, autoradiography) imaging as well as magnetic resonance (MR) and in vivo optical imaging. Molecular-genetic imaging has its roots in both molecular biology and cell biology, as well as in new imaging technologies. The focus of this presentation will be nuclear-based molecular-genetic imaging, but it will comment on the value and utility of combining different imaging modalities. Nuclear-based molecular imaging can be viewed in terms of three different imaging strategies: (1) "indirect" reporter gene imaging; (2) "direct" imaging of endogenous molecules; or (3) "surrogate" or "bio-marker" imaging. Examples of each imaging strategy will be presented and discussed. The rapid growth of in vivo molecular imaging is due to the established base of in vivo imaging technologies, the established programs in molecular and cell biology, and the convergence of these disciplines. The development of versatile and sensitive assays that do not require tissue samples will be of considerable value for monitoring molecular-genetic and cellular processes in animal models of human disease, as well as for studies in human subjects in the future. Noninvasive imaging of molecular-genetic and cellular processes will complement established ex vivo molecular-biological assays that require tissue sampling, and will provide a spatial as well as a temporal dimension to our understanding of various diseases and disease processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号