首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A second cytosolic ascorbate peroxidase (cAPX; EC 1.11.1.11) gene from Arabidopsis thaliana has been characterised. This second gene (designated APX1b) maps to linkage group 3 and potentially encodes a cAPX as closely related to that from other dicotyledonous species as to the other member of this gene family (Kubo et al, 1993, FEBS Lett 315: 313–317; here designated APX1a), which maps to linkage group 1. In contrast, the lack of sequence similarity in non-coding regions of the genes implies that they are differentially regulated. Under non-stressed conditions only APX1a is expressed. APX1b was identified during low-stringency probing using a cDNA coding for pea cAPX which, in turn, was recovered from a cDNA library by immunoscreening with an antiserum raised against tea plastidial APX (pAPX). No pAPX cDNAs were recovered, despite the antiserum displaying specificity for pAPX in Western blots.Abbreviations ATG methionine translation initiation codon - bp base pair - cAPX cytosolic ascorbate peroxidase - pAPX plastidial ascorbate peroxidase - RFLP restriction fragment length polymorphism Accession numbers: The APX1b sequence is in the EMBL database under accession number X80036M.S. gratefully acknowledges the support from the Junta Nacional de Investigaçâo Cientifica e Tecnológia, Portugal (grant number BD/394/90-IE). This work was supported by the Biotechnological and Biological Sciences Research Council through a grant-in-aid to the John Innes Centre.  相似文献   

2.
The catalase multigene family in Arabidopsis includes three genes encoding individual subunits that associate to form at least six isozymes that are readily resolved by nondenaturing gel electrophoresis. CAT1 and CAT3 map to chromosome 1, and CAT2 maps to chromosome 4. The nucleotide sequences of the three coding regions are 70 to 72% identical. The amino acid sequences of the three catalase subunits are 75 to 84% identical and 87 to 94% similar, considering conservative substitutions. Both the individual isozymes and the individual subunit mRNAs show distinct patterns of spatial (organ-specific) expression. Six isozymes are detected in flowers and leaves and two are seen in roots. Similarly, mRNA abundance of the three genes varies among organs. All three mRNAs are highly expressed in bolts, and CAT2 and CAT3 are highly expressed in leaves.  相似文献   

3.
4.
A class of UDP-glycosyltransferases (UGTs) defined by the presence of a C-terminal consensus sequence is found throughout the plant and animal kingdoms. Whereas mammalian enzymes use UDP-glucuronic acid, the plant enzymes typically use UDP-glucose in the transfer reactions. A diverse array of aglycones can be glucosylated by these UGTs. In plants, the aglycones include plant hormones, secondary metabolites involved in stress and defense responses, and xenobiotics such as herbicides. Glycosylation is known to regulate many properties of the aglycones such as their bioactivity, their solubility, and their transport properties within the cell and throughout the plant. As a means of providing a framework to start to understand the substrate specificities and structure-function relationships of plant UGTs, we have now applied a molecular phylogenetic analysis to the multigene family of 99 UGT sequences in Arabidopsis. We have determined the overall organization and evolutionary relationships among individual members with a surprisingly high degree of confidence. Through constructing a composite phylogenetic tree that also includes all of the additional plant UGTs with known catalytic activities, we can start to predict both the evolutionary history and substrate specificities of new sequences as they are identified. The tree already suggests that while the activities of some subgroups of the UGT family are highly conserved among different plant species, others subgroups shift substrate specificity with relative ease.  相似文献   

5.
Glycosyltransferases transfer sugars from NDP-sugar donors to acceptors. The multigene family of transferases described in this paper typically transfer glucose from UDP-glucose to low-molecular-mass acceptors in the cytosol of plant cells. There are 107 sequences in the genome of Arabidopsis thaliana that contain a consensus, suggesting they belong to this Group 1 multigene family. The family has been analysed phylogenetically, and a functional genomics approach has been applied to explore the relatedness of sequence similarity to catalytic specificity and stereoselectivity. Enzymes belonging to this class of transferases glycosylate a vast array of acceptors, including natural products such as secondary metabolites and hormones, as well as xenobiotics absorbed by the plant, such as herbicides and pesticides. Conjugation to glucose potentially changes the activity of the acceptor molecule and invariably changes its location within the plant cell. Using the genomics approach described, a platform of knowledge has been constructed that will enable an understanding to be gained on the role of these enzymes in cellular homoeostasis, as well as their activity in biotransformations in vitro that require strict regioselectivity of glycosylation.  相似文献   

6.
Eukaryotic translation initiation factor 4E (eIF4E) is perhaps best known for its function in the initiation of protein synthesis on capped mRNAs in the cytoplasm. However, recent studies have highlighted that eIF4E has many additional functions, which include the nuclear export of specific mRNAs as well as roles in ageing and the translation of some uncapped viral RNAs. This review aims to update the reader on recent developments, including the potential of eIF4E as a therapeutic target.  相似文献   

7.
The sequence motif commonly called a Nudix box, represented by (GX(5)EX(7)REVXEEXGU) is the marker of a widely distributed family of enzymes that catalyze the hydrolysis of a variety of nucleoside diphosphate derivatives. Here we describe the cloning and characterization of an Arabidopsis thaliana cDNA encoding a Nudix hydrolase that degrades NADH. The deduced amino acid sequence of AtNUDT1 contains 147 amino acids. The recombinant AtNUDT1 was expressed in Escherichia coli and purified. In the presence of Mn(2+) and the optimal pH of 7. 0, the recombinant AtNUDT1 catalyzed the hydrolysis of NADH with a K(m) value of 0. 36 mm. A V(max) of 12. 7 units mg (-1) for NADH was determined. The recombinant AtNUDT1 migrated as a dimer on a gel filtration column. Biochemical analysis of recombinant AtNUDT1 indicated that the first characterized member of the Nudix family from A. thaliana is a NADH pyrophosphatase.  相似文献   

8.
Schlick P  Skern T 《FEBS letters》2002,529(2-3):337-340
Eukaryotic initiation factor (eIF) 4GI is efficiently cleaved during picornaviral replication. eIF4GI processing has also recently been observed during HIV-1 replication. We have compared the efficiency of eIF4GI proteolysis in rabbit reticulocyte lysates during translation of mRNAs encoding the foot-and-mouth disease virus leader proteinase (L(pro)) or the HIV-1 proteinase (HIV-1(pro)). L(pro) cleaved 50% eIF4GI within 12 min whereas HIV-1(pro) required 4 h; the concentrations were 2 pg/microl (0.1 nM) for L(pro) and 60 pg/microl (2.66 nM) for HIV-1(pro). HIV-1(pro) processing of eIF4GI is therefore not quantitatively analogous to that of L(pro), suggesting that the primary function of eIF4GI cleavage in HIV-1 replication may not be protein synthesis inhibition.  相似文献   

9.
In Arabidopsis, RPP4 confers resistance to Peronospora parasitica (P.p.) races Emoy2 and Emwa1 (downy mildew). We identified RPP4 in Col-0 as a member of the clustered RPP5 multigene family encoding nucleotide-binding leucine-rich repeat proteins with Toll/interleukin-1 receptor domains. RPP4 is the orthologue of RPP5 which, in addition to recognizing P.p. race Noco2, also mediates resistance to Emoy2 and Emwa1. Most differences between RPP4 and RPP5 occur in residues that constitute the TIR domain and in LRR residues that are predicted to confer recognition specificity. RPP4 requires the action of at least 12 defence components, including DTH9, EDS1, PAD4, PAL, PBS2, PBS3, SID1, SID2 and salicylic acid. The ndr1, npr1 and rps5-1 mutations partially compromise RPP4 function in cotyledons but not in true leaves. The identification of RPP4 as a TIR-NB-LRR protein, coupled with its dependence on certain signalling components in true leaves, is consistent with the hypothesis that distinct NB-LRR protein classes differentially signal through EDS1 and NDR1. Our results suggest that RPP4-mediated resistance is developmentally regulated and that in cotyledons there is cross-talk between EDS1 and NDR1 signalling and processes regulating systemic acquired resistance.  相似文献   

10.
11.
《Plant science》2001,161(4):685-693
A transgenic Arabidopsis thaliana line, generated using a T-DNA vector carrying a promoterless gus reporter gene, showed intense GUS expression in young leaves and rapidly growing stem tissues. The gus fusion has tagged the 3′ region of the gene encoding the A. thaliana eukaryotic translation initiation factor eIF-4A1. Comparison of the genomic and cDNA sequence shows that the eIF-4A1 gene contains four introns. Three introns interrupt the translated region, whereas the largest intron splits the 5′-untranslated region. In plants homozygous for the T-DNA markers, the eIF-4A1 and gus genes are expressed as different mature mRNAs. The gus gene is possibly expressed from a cryptic promoter downstream the eIF-4A1 gene.  相似文献   

12.
Sato M  Nakahara K  Yoshii M  Ishikawa M  Uyeda I 《FEBS letters》2005,579(5):1167-1171
Arabidopsis thaliana plants with mutations in the genes encoding eukaryotic initiation factor (eIF4E) or isoform of eIF4E (eIF(iso)4E) were tested for susceptibility to Clover yellow vein virus (ClYVV), a member of the genus Potyvirus. ClYVV accumulated in both inoculated and upper uninoculated leaves of mutant plants lacking eIF(iso)4E, but not in mutant plants lacking eIF4E. In contrast, Turnip mosaic virus (TuMV), another member of the genus Potyvirus, multiplied in mutant plants lacking eIF4E but not in mutant plants lacking eIF(iso)4E. These results suggest the selective involvement of members of the eIF4E family in infection by potyviruses.  相似文献   

13.
P Hilson  K L Carroll    P H Masson 《Plant physiology》1993,103(2):525-533
The poly(A) tail of eukaryotic mRNAs associates with poly(A)-binding (PAB) proteins whose role in mRNA translation and stability is being intensively investigated. Very little is known about the structure and function of the PAB genes in plants. We have cloned multiple PAB-related sequences from Arabidopsis thaliana. Results suggest that PAB proteins are encoded by a multigene family. One member of this family (PAB2) is expressed in root and shoot tissues. The complete nucleotide sequence of PAB2 was determined. Study of the predicted PAB2 protein reveals a similarity in structure among vertebrate, insect, yeast, and plant PAB proteins. All contain two highly conserved domains: an amino-terminal sequence formed by four RNA recognition motifs and an uncharacterized carboxyl-terminal region of 69 to 71 amino acids. Possible roles for the carboxyl-terminal conserved domain are discussed in view of recently published data concerning the structure and function of PAB proteins.  相似文献   

14.
The results of this investigation show that the 59-kDa protein synthesis initiation factor from wheat germ, designated eukaryotic initiation factor (eIF)-4G by Browning et al. (Browning, K.S., Maia, D.M., Lax, S.R., and Ravel, J.M. (1987) J. Biol. Chem. 262, 539-541), cross-links to the 5'-terminal cap of oxidized mRNA in the presence of eIF-4A, eIF-4F, and ATP, stimulates the RNA-dependent ATPase activities of eIF-4A and a mixture of eIF-4A and eIF-4F, and stimulates the unwinding activities of eIF-4A, eIF-4F, and a mixture of eIF-4A and eIF-4F. These findings strongly suggest that the 59-kDa factor from wheat germ is the functional equivalent of the 80-kDa protein synthesis initiation factor, eIF-4B, from mammalian cells. Recent reports indicate that the wheat germ initiation factor which contains two subunits of 80 and 28 kDa and which was given the designation "eIF-4B" by Lax et al. (Lax, S.R., Lauer, S.J., Browning, K. S., and Ravel, J.M. (1986) Methods Enzymol. 118, 109-128) is an isozyme form of eIF-4F and not the functional equivalent of mammalian eIF-4B. On the basis of functional characteristics we propose that the designation for the wheat germ factor containing the 80- and 28-kDa polypeptides be changed from eIF-4B to eIF-(iso)4F and the designation for the 59-kDa factor be changed from eIF-4G to eIF-4B.  相似文献   

15.
Covalent attachment of ubiquitin to other cellular proteins has been implicated in a multitude of diverse physiological processes in eukaryotes including selective protein degradation. This attachment is carried out by a multi-enzyme pathway consisting of three classes of enzymes: ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), and ubiquitin-protein ligases (E3s). E2s accept activated ubiquitin from E1 and conjugate it to target proteins with or without the participation of specific E3s. Previously, we have isolated wheat cDNAs encoding 16 and 23 kDa E2s, TaUBC1 and TaUBC4, respectively. TaUBC1 shows structural homology to the yeast RAD6 E2 that is essential for DNA repair whereas TaUBC4 is related to the yeast ScUBC8 E2, both of which effectively conjugate ubiquitin to histones in vitro but as yet are without a known in vivo function. Here, we report the isolation of genomic and cDNA homologues of these genes from Arabidopsis thaliana. In Arabidopsis, both of these E2s are encoded by three member gene families. Members of the AtUBC1 gene family, comprising AtUBC1, 2 and 3, encode 150–152 amino acid proteins that are 83–99% identical to each other and TaUBC1 and contain four introns that are conserved with respect to position. Members of the AtUBC4 gene family, comprising AtUBC4, 5 and 6, encode 187–191 amino acid proteins that are 73–88% identical to each other and TaUBC4 and contain five introns that are conserved with respect to position. In contrast, AtUBC1-3 gene products are only 31–36% identical to those derived from AtUBC4-6. mRNA for each family was detected in Arabidopsis roots, leaves, stems, and flowers indicating that members of each family are expressed in most if not all tissues.  相似文献   

16.
17.
We isolated three alleles of an Arabidopsis thaliana gene named ROXY1, which initiates a reduced number of petal primordia and exhibits abnormalities during further petal development. The defects are restricted to the second whorl of the flower and independent of organ identity. ROXY1 belongs to a subgroup of glutaredoxins that are specific for higher plants and we present data on the first characterization of a mutant from this large Arabidopsis gene family for which information is scarce. ROXY1 is predominantly expressed in tissues that give rise to new flower primordia, including petal precursor cells and petal primordia. Occasionally, filamentous organs with stigmatic structures are formed in the second whorl of the roxy1 mutant, indicative for an ectopic function of the class C gene AGAMOUS (AG). The function of ROXY1 in the negative regulation of AG is corroborated by premature and ectopic AG expression in roxy1-3 ap1-10 double mutants, as well as by enhanced first whorl carpeloidy in double mutants of roxy1 with repressors of AG, such as ap2 or lug. Glutaredoxins are oxidoreductases that oxidize or reduce conserved cysteine-containing motifs. Mutagenesis of conserved cysteines within the ROXY1 protein demonstrates the importance of cysteine 49 for its function. Our data demonstrate that, unexpectedly, a plant glutaredoxin is involved in flower development, probably by mediating post-translational modifications of target proteins required for normal petal organ initiation and morphogenesis.  相似文献   

18.
19.
Two distinct cDNAs encoding protein synthesis initiation factor 4A (eIF-4A) were isolated from an Arabidopsis thaliana cDNA library and sequenced. The deduced amino acid sequences from the two cDNAs were compared to eIF-4A from tobacco, mouse and Saccharomyces cerevisiae. The putative ATP-binding sites and RNA helicase motifs were identified.  相似文献   

20.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the reaction between gaseous carbon dioxide (CO2) and ribulose‐1,5‐bisphosphate. Although it is one of the most studied enzymes, the assembly mechanisms of the large hexadecameric RuBisCO is still emerging. In bacteria and in the C4 plant Zea mays, a protein with distant homology to p terin‐4α‐c arbinolamine d ehydratase (PCD) has recently been shown to be involved in RuBisCO assembly. However, studies of the homologous PCD‐like protein (RAF2, RuBisCO assembly factor 2) in the C3 plant Arabidopsis thaliana (A. thaliana) have so far focused on its role in hormone and stress signaling. We investigated whether A. thalianaRAF2 is also involved in RuBisCO assembly. We localized RAF2 to the soluble chloroplast stroma and demonstrated that raf2 A. thaliana mutant plants display a severe pale green phenotype with reduced levels of stromal RuBisCO. We concluded that the RAF2 protein is probably involved in RuBisCO assembly in the C3 plant A. thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号