首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
Large wounds resulting from severe injuries are generally treated with extended reconstructive operations (e.g., free flaps), which are accompanied by long hospitalizations and risks of infection, thrombosis, and flap loss. Integra is a collagen template that can be used for reconstruction of defects. The take rate and the rate of infection are essential for the successful use of Integra (Johnson and Johnson, Hamburg, Germany). Whether the take rate and integration of Integra could be improved with the use of fibrin glue and negative-pressure therapy was assessed. Between January of 2002 and December of 2002, patients with large defects who underwent Integra grafting for reconstruction were randomly divided into groups receiving either a new treatment with fibrin glue-anchored Integra and postoperative negative-pressure therapy or conventional treatment. Demographic features, cause of the wound, location of the wound, take rate, complications of Integra coverage, time from Integra coverage to skin transplantation, and functional and aesthetic results were assessed. Twelve patients (with similar group distributions with respect to sex, age, and location and cause of the injury) were included in the study. The take rate was 78 +/- 8 percent in the conventional treatment group and 98 +/- 2 percent in the fibrin/negative-pressure therapy group (p < 0.003). The mean period from Integra coverage to skin transplantation was 24 +/- 3 days in the conventional treatment group but only 10 +/- 1 days in the fibrin/negative-pressure therapy group (p < 0.002). The decrease in the interval between coverage with Integra and skin transplantation resulted in shorter hospital stays. The use of fibrin glue and negative-pressure therapy in combination with Integra could shorten the period from coverage to integration, which would be beneficial in terms of decreased risks of infection, thrombosis, and catabolism. Therefore, it is suggested that Integra be used in combination with fibrin glue and negative-pressure therapy to improve clinical outcomes and shorten hospital stays, with decreased risks of accompanying complications.  相似文献   

2.
Fibronectin (Fn) has been shown to play an important role in wound healing because it appears to be the stimulus for migration of fibroblasts and epidermal cells. The purpose of this study was to investigate whether topical application of plasma Fn (pFn) improves healing of full-thickness skin wounds in rats. A round section of full-thickness skin (diameter of approximately 15 mm) was resected in rats. Animals were then divided into two groups, and wounds were treated topically with a single application of human plasma albumin (control group) or human pFn (FN group). Wound closure rate, hydroxyproline concentration, and histologic features (immunohistochemical staining) were evaluated. The FN group had a significantly higher wound closure rate and hydroxyproline level in the skin than the control group. Histologic analysis of macrophage and fibroblast migration, collagen regeneration, and epithelialization were significantly increased in the FN group compared with the control group. A single topical application of pFn increased the migration of macrophages, myofibroblasts, and fibroblasts. Moreover, further release of transforming growth factor-beta1 from activated fibroblasts, keratinocytes, and epithelial cells may also contribute to the beneficial effect of pFn on wound healing.  相似文献   

3.
In this study, we examined the impact of matrix metalloproteinases (MMP) on epithelialization, granulation tissue development, wound contraction, and alpha-smooth muscle actin (ASMA) expression during cutaneous wound repair through systemic administration of the synthetic broad-spectrum MMP inhibitor GM 6001 (N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide). Four full-thickness excisional wounds (50 mm2) on the back of 22 young female Sprague-Dawley rats, 12 treated with GM 6001 100 mg/kg and 10 with vehicle, were allowed to heal by secondary intention. GM 6001-treated wounds were minimally resurfaced with neoepithelium, despite unaltered keratinocyte proliferation in wound edges, whereas control wounds were completely covered with 3-7 cell layers of parakeratinized epithelium on post-wounding day 7. Hydroxyproline concentration, a marker of collagen, and cell proliferation in granulation tissue did not differ significantly between GM 6001-treated and control groups. Impaired wound contraction (P < 0.01) was associated with a dramatic reduction of ASMA-positive myofibroblasts in granulation tissue of GM 6001 wounds. This was not due to GM6001 blocking transforming growth factor-beta1 (TGF-beta1)-induced myofibroblast differentiation since GM 6001 did not inhibit TGF-beta1-induced ASMA expression and force generation in cultured rat dermal fibroblasts. The profound impairment of skin repair by the nonselective MMP inhibitor GM 6001 suggests that keratinocyte resurfacing, wound contraction, and granulation tissue organization are highly MMP-dependent processes.  相似文献   

4.
Background aimsRecalcitrant diabetic wounds are not responsive to the most common treatments. Bone marrow-derived stem cell transplantation is used for the healing of chronic lower extremity wounds.MethodsWe report on the treatment of eight patients with aggressive, refractory diabetic wounds. The marrow-derived cells were injected/applied topically into the wound along with platelets, fibrin glue and bone marrow-impregnated collagen matrix.ResultsFour weeks after treatment, the wound was completely closed in three patients and significantly reduced in the remaining five patients.ConclusionsOur study suggests that the combination of the components mentioned can be used safely in order to synergize the effect of chronic wound healing.  相似文献   

5.
王增辉  黄海  革军  常江  王臻 《生物磁学》2011,(9):1617-1620
目的:观察创面生物活性玻璃修复材料对家猪皮肤创面的促愈合作用。方法:选择14头家猪,随机分成7组,每组2头,在每头猪的脊柱两旁制造3个4×4cm的全层皮肤缺损的创面模型,每头猪6个创面又分成实验组和空白对照组,于试验后每天观察创面愈合情况,第1、3、7、14、21、28、35天图像分析计算创面愈合率,并同时取创面组织行组织学染色,观察各组材料对家猪皮肤全层缺损创面愈合的影响。结果:在涂材料的实验组和空白对照组创面愈合时间分别是23.19±1.27d、29.52±1.54d两组组间比较,具有统计学意义(P〈0.05);实验组的创面愈合率在各时间段均高于空白对照组,差异有统计学意义(P〈0.05);组织学观察实验组的上皮化程度、表皮生长、成纤维细胞、毛细血管数量均好于空白对照组。结论:创面生物活性玻璃修复材料对家猪皮肤创面愈合具有促进作用,可作为一种新型的促愈合覆盖材料进一步研究。  相似文献   

6.
目的:观察创面生物活性玻璃修复材料对家猪皮肤创面的促愈合作用。方法:选择14头家猪,随机分成7组,每组2头,在每头猪的脊柱两旁制造3个4×4cm的全层皮肤缺损的创面模型,每头猪6个创面又分成实验组和空白对照组,于试验后每天观察创面愈合情况,第1、3、7、14、21、28、35天图像分析计算创面愈合率,并同时取创面组织行组织学染色,观察各组材料对家猪皮肤全层缺损创面愈合的影响。结果:在涂材料的实验组和空白对照组创面愈合时间分别是23.19±1.27d、29.52±1.54d两组组间比较,具有统计学意义(P<0.05);实验组的创面愈合率在各时间段均高于空白对照组,差异有统计学意义(P<0.05);组织学观察实验组的上皮化程度、表皮生长、成纤维细胞、毛细血管数量均好于空白对照组。结论:创面生物活性玻璃修复材料对家猪皮肤创面愈合具有促进作用,可作为一种新型的促愈合覆盖材料进一步研究。  相似文献   

7.
The genetically diabetic db/db mouse exhibits symptoms that resemble human type 2 diabetes mellitus, demonstrates delayed wound healing, and has been used extensively as a model to study the role of therapeutic topical reagents in wound healing. The purpose of the authors' study was to validate an excisional wound model using a 6-mm biopsy punch to create four full-thickness dorsal wounds on a single db/db mouse. Factors considered in developing the db/db wound model include reproducibility of size and shape of wounds, the effect of semiocclusive dressings, comparison with littermate controls (db/-), clinical versus histologic evidence of wound closure, and cross-contamination of wounds with topically applied reagents. The size of wounds was larger, with less variation in the db/db mice (31.11 +/- 3.76 mm2) versus db/- mice (23.64 +/- 4.78 mm2). Wounds on db/db mice that were covered with a semiocclusive dressing healed significantly more slowly (mean, 27.75 days) than wounds not covered with the dressing (mean, 13 days; p < 0.001), suggesting the dressings may splint the wounds open. As expected, wounds healed more slowly on db/db mice than db/- mice (covered wounds, 27.75 days versus 11.86 days, p < 0.001; wounds not covered, 13 days versus 11.75 days, p = 0.39). Covered wounds, thought to be closed by clinical examination, were confirmed closed by histology only 62 percent of the time in the db/db and 100 percent of the time in the db/- mice. Topical application of blue histologic dye or soluble biotinylated laminin 5 to one of the four wounds did not spread locally and contaminate adjacent wounds. Multiple, uniform, 6-mm wounds in db/db mice heal in a relatively short time, decrease the number of animals needed for each study, and allow each animal to serve as its own control. The db/db diabetic mouse appears to be an excellent model of delayed wound healing, particularly for studying factors related to epithelial migration.  相似文献   

8.
Wound healing requires a complex series of reactions and interactions among cells and their mediators, resulting in an overlapping series of events including coagulation, inflammation, epithelialization, formation of granulation tissue, matrix and scar formation. Cytokines and chemokines promote inflammation, angiogenesis, facilitate the passage of leukocytes from circulation into the tissue, and contribute to the regulation of epithelialization. They integrate inflammatory events and reparative processes that are important for modulating wound healing. Thus both cytokines and chemokines are important targets for therapeutic intervention. The chemokine-mediated regulation of angiogenesis is highly sophisticated, fine tuned, and involves pro-angiogenic chemokines, including CXCL1-3, 5-8 and their receptors, CXCR1 and CXCR2. CXCL1 and CXCR2 are expressed in normal human epidermis and are further induced during the wound healing process of human burn wounds, especially during the inflammatory, epithelialization and angiogenic processes. Human skin explant studies also show CXCR2 is expressed in wounded keratinocytes and Th/1/Th2 cytokine modulation of CXCR2 expression correlates with proliferation of epidermal keratinocytes. Murine excision wound healing, chemical burn wounds and skin organ culture systems are valuable models for examining the role of inflammatory cytokines and chemokines in wound healing.  相似文献   

9.
Clinical trials of amniotic membranes in burn wound care   总被引:2,自引:0,他引:2  
Four test conditions of increasing complexity were used to evaluate the clinical efficacy of amniotic membranes as biologic dressings on donor sites and burn wounds in children. These were the clean-skin donor-site wound, the uncontaminated shallow partial-thickness burn wound, the bed of freshly excised full-thickness wounds, and the granulating surface of colonized burn wounds. The rate of epithelialization under amniotic membranes was the same as that under 5% scarlet red ointment or 0.5% silver nitrate solution dressings. Preservation of a healthy excised wound bed and maintenance of a low bacterial count in contaminated wounds paralleled the experience with human allograft dressings despite technical difficulties and the absence of vascularization of amniotic membrane and its fragile structure. Tentative conclusions are drawn as to the mechanisms by which biologic dressings exert their beneficial effects.  相似文献   

10.
INTRODUCTION: We studied the migration pattern, morphology and viability of cells suspended in five different fibrin glues. Besides this, the behaviour of chondrocytes seeded on porous matrices comprising different collagen types sealed with fibrin glue was investigated. MATERIAL AND METHODS: In an experiment A, cell suspension (0.5x10(6) cells) was incubated with different fibrin glues. Experiment B was set up to evaluate chondrocytes migration either through a collagen I/III (Chondro-Gide, Geistlich Biomaterials, Switzerland) or collagen II matrix sealed with different fibrin glues in a perfusion chamber system. Analysis were performed by lightmicroscopy (Mayer's hematoxylin-eosin; Masson-Goldner; TUNEL test) and by transmission and scanning electron microscopy. All fibrin glues were measured for TGF-beta 1 and 2 with a specific ELISA. RESULTS: After incubation of cell suspension in autologous fibrin glue, the morphology of cells is chondrocyte-like. Spindly, process-bearing cells were seen in commercial fibrin glue. Cells suspended in commercial fibrin glue revealed a significant higher percentage of TUNEL positive cells compared to fibrin tissue adhesives mixed with autologous serum (p=0.006). The TGF-beta 1 and 2 concentration was significantly higher in partial autologous fibrin sealant (PAF) compared to their commercial counterparts (p=0.001). Cells seeded on the collagen I/III matrix retained their chondrocytic morphology, while in the type II collagen matrix the chondrocytes displayed a fibroblastic phenotype. The ratio of TUNEL positive cells for the collagen I/III matrix was significantly surpassed by the values, when a collagen II matrix was used (p=0.008). No ingrowth of cells was seen in any of the experimental conditions. CONCLUSION: Partial autologous fibrin glue and collagen I/III matrices are favourable in respect to migration pattern, morphology and viability, but definitive conclusions can only be drawn after in vivo studies. This will be addressed in future animal studies.  相似文献   

11.
Matrix metalloproteinase- (MMP-9) is involved in processes that occur during cutaneous wound healing such as inflammation, matrix remodeling, and epithelialization, To investigate its role in healing, full thickness skin wounds were made in the dorsal region of MMP-9-null and control mice and harvested up to 14 days post wounding. Gross examination and histological and immunohistochemical analysis indicated delayed healing in MMP-9-null mice. Specifically, MMP-9-null wounds displayed compromised reepithelialization and reduced clearance of fibrin clots. In addition, they exhibited abnormal matrix deposition, as evidenced by the irregular alignment of immature collagen fibers. Despite the presence of matrix abnormalities, MMP-9-null wounds displayed normal tensile strength. Ultrastructural analysis of wounds revealed the presence of large collagen fibrils, some with irregular shape. Keratinocyte proliferation, inflammation, and angiogenesis were found to be normal in MMP-9-null wounds. In addition, VEGF levels were similar in control and MMP-9-null wound extracts. To investigate the importance of MMP-9 in wound reepithelialization we tested human and murine keratinocytes in a wound migration assay and found that antibody-based blockade of MMP-9 function or MMP-9 deficiency retarded migration. Collectively, our observations reveal defective healing in MMP-9-null mice and suggest that MMP-9 is required for normal progression of wound closure.  相似文献   

12.
The purpose of the study was to compare directly the effect of healing and the formation of the basement membrane during wound healing from two autologous primary keratinocyte cultures in the liquid environment in full-thickness wounds in pigs. Wounds were either transplanted with cultured epidermal autografts (n = 26) or autologous keratinocyte suspensions (n = 24) or treated with saline alone (n = 40) and covered with a chamber. All wounds transplanted with cultured epidermal autografts and keratinocyte cell suspensions had positive "take" after transplantation. Healing times were significantly shorter for wounds treated with either cultured epidermal autografts or keratinocyte suspensions (p = 0.0001) compared with saline-treated wounds but were not different from each other (p = 0.1835). There were no differences in cytokeratin and laminin expression; however, staining with monoclonal antibody against collagen type VII showed a lower signal for cultured epidermal autografts only on days 8 and 16 compared with keratinocyte suspensions. Electron microscope evaluation showed a higher incidence of anchoring fibrils and a more mature dermal-epidermal junction in wounds treated with keratinocyte cell suspensions at day 8. These findings may be due to the single, noncontact-inhibited cells and the early formation of an in vivo neodermis to the wet wound environment. These data suggest that wounds transplanted with autologous keratinocyte suspensions in a wet environment may be an alternative method in the treatment of wounds.  相似文献   

13.
Svensjö T  Pomahac B  Yao F  Slama J  Eriksson E 《Plastic and reconstructive surgery》2000,106(3):602-12; discussion 613-4
Full-thickness skin wounds are preferably allowed to heal under controlled hydration dressings such as hydrocolloids. It was hypothesized that a wet (liquid) environment rather than a dry or moist one would accelerate the wound healing process. We compared skin repair by secondary intention in full-thickness skin wounds in wet (saline), moist (hydrocolloid), and dry (gauze) conditions in an established porcine wound healing model. The study included three animals with a total of 70 wounds layered in a standardized fashion on the back of young Yorkshire pigs. Twelve days after wounding, 0 percent of dry, 20 percent of moist, and 86 percent of saline-treated wounds were completely reepithelialized (p values = 0.0046 and 0.027 for saline wounds compared with dry and moist wounds, respectively). The accelerated healing was caused at least in part by faster contraction in wet wounds (p value < 0.005 compared with that of other groups 9 and 12 days after wounding). Development of granulation tissue was faster in moist conditions than it was for dry and wet wounds. The thickness and number of cell layers of the newly formed epidermis were greater in dry and wet wounds than in moist ones. It was concluded that these full-thickness porcine skin wounds healed faster in a wet environment than in a moist one. Dry wounds healed more slowly than moist wounds. The basic mechanisms of skin wound repair were influenced by the treatment modality as demonstrated by the observed differences in granulation tissue formation, reepithelialization, and rate of wound contraction.  相似文献   

14.
15.
The strength of healing full-thickness incised dermal wounds in P/J mice was less than that of CD-1 mice although the strength of intact skin was similar for each strain. Five days after surgery, P/J mice had wounds with tensile strengths of 65 +/- 18g while CD-1 mice had wounds with strengths of 85 +/- 15g. The wound breaking strength of P/J mice was restored to normal values (86 +/- 18g) by administering glucan. The consequence of defective monocytes in wound repair is discussed in reference to P/J mice.  相似文献   

16.
This study was designed to test the efficacy of enriched cell culture medium as a wound dressing. The rationale was to create within the wound space an optimal microenvironment, conducive to cellular proliferation, vascular granulation tissue formation, and epithelialization. This study was performed on various wounds that failed to respond to previous conventional treatments.A total of 288 wounds were within the inclusion criteria, with only contaminated and neoplastic wounds excluded. Most of the patients (80 percent) were ambulatory, and the wounds were examined by the attending physician once every 7 to 14 days at an outpatient clinic. The remaining 20 percent of patients were admitted to the study while hospitalized.Cell culture medium MCDB, supplemented with insulin, thyroxin, and growth hormone, was gelled. The gel was self-applied once a day to freshly washed wounds, covered with a gauze pad, and anchored with netting.Healing started 7 to 14 days after the initiation of treatment with enriched cell culture medium. However, the criterion for success of the treatment was determined on complete wound closure, which was achieved in 189 of 288 wounds (65.6 percent). Wound closure was correlated with the initial wound volume, stage, and origin. The average time required for closure of wounds caused by systemic pathologies (n = 181) and those based on regional status (n = 107) were 12.0 and 4.4 weeks, respectively, compared with 290 and 10.3 weeks of the previous conventional treatment. In 19 extensive wounds, when vascularized granulation tissue was established, a successful surgical closure was attained.Most wounds of patients who did not continue the enriched cell culture medium treatment (34.4 percent) manifested reduced wound volume, ranging from 11 to 98 percent of initial volume. Discontinuation of treatment was associated with difficulties in reaching the clinic for the weekly examination, rather than for reasons directly related to the treatment itself, and occurred significantly earlier during the treatment period.Thus, enriched cell culture medium was effective in stimulating wound healing in recalcitrant wounds. The healing was rapid with minimum scarring and pain. No side effects or allergic reactions were reported or observed.  相似文献   

17.
The effect of fibrin glue on skin grafts in infected sites.   总被引:1,自引:0,他引:1  
Fibrin bonding of skin grafts to wounds is an essential part of the graft-adherence process. Bacteria, in concentrations greater than 10(5)/gm of tissue, are associated with graft failure. Sixty-five rats were randomly divided into three groups, dorsal split-thickness skin grafts were harvested, and the sites were inoculated with Staphylococcus aureus. After incubation, each wound was quantitatively biopsied and treated with saline, fibrin glue with aprotinin, or fibrin glue alone. We found that the addition of commercially available fibrin glue with or without the antifibrinolytic agent aprotinin is capable of restoring graft adherence to normal levels in graft sites infected with greater than 10(5) bacteria/gm of tissue. Fibrin glue may have potential for increasing skin-graft take in the clinical situation where the graft bed is infected.  相似文献   

18.
Sheets of cultured allogeneic human keratinocytes have been used for the treatment of burns and chronic leg ulcers but there has been no animal assay for the therapeutic action of these cultures. In order to analyze the effects of frozen cultures of human keratinocytes on wound healing, we have developed such an assay based on the rate of repair of full-thickness skin wounds in immunocompetent NMR1 mice. Reepithelialization of the control wounds, originating from the murine epithelium at the edge of the wound, occurred at a constant rate of advance of 150 microm/day. When frozen cultured human epidermal sheets were thawed at room temperature for 5-10 min and applied to the surface of the wound, the murine epithelium advanced at 267 microm/day. Most wounds treated with frozen cultures completely healed after 10 days, whereas most control wounds required 16 days. The accelerated reepithelialization did not depend on the presence of proliferative human keratinocytes in the frozen cultures. The cultures also promoted early formation of granulation tissue and laminin deposition over the surface of the wound bed. This simple assay should permit quantitative analysis of the effects on healing exerted not only by cultured cells, but also by proteins and small molecules.  相似文献   

19.
Human skin heals more slowly in aged vs. young adults, but the mechanism for this delay is unclear. In humans, eccrine sweat glands (ESGs) and hair follicles underlying wounds generate cohesive keratinocyte outgrowths that expand to form the new epidermis. Here, we compared the re‐epithelialization of partial‐thickness wounds created on the forearm of healthy young (< 40 yo) and aged (> 70 yo) adults. Our results confirm that the outgrowth of cells from ESGs is a major feature of repair in young skin. Strikingly, in aged skin, although ESG density is unaltered, less than 50% of the ESGs generate epithelial outgrowths during repair (vs. 100% in young). Surprisingly, aging does not alter the wound‐induced proliferation response in hair follicles or ESGs. Instead, there is an overall reduced cohesiveness of keratinocytes in aged skin. Reduced cell–cell cohesiveness was most obvious in ESG‐derived outgrowths that, when present, were surrounded by unconnected cells in the scab overlaying aged wounds. Reduced cell–cell contact persisted during the repair process, with increased intercellular spacing and reduced number of desmosomes. Together, reduced outgrowths of ESG (i) reduce the initial number of cells participating in epidermal repair, (ii) delay wound closure, and (iii) lead to a thinner repaired epidermis in aged vs. young skin. Failure to form cohesive ESG outgrowths may reflect impaired interactions of keratinocytes with the damaged ECM in aged skin. Our findings provide a framework to better understand the mediators of delayed re‐epithelialization in aging and further support the importance of ESGs for the repair of human wounds.  相似文献   

20.
Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p < 0.05). This study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号