首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Meneghini MD  Wu M  Madhani HD 《Cell》2003,112(5):725-736
Boundary elements hinder the spread of heterochromatin, yet these sites do not fully account for the preservation of adjacent euchromatin. Histone variant H2A.Z (Htz1 in yeast) replaces conventional H2A in many nucleosomes. Microarray analysis revealed that HTZ1-activated genes cluster near telomeres. The reduced expression of most of these genes in htz1Delta cells was reversed by the deletion of SIR2 (sir2Delta) suggesting that H2A.Z antagonizes telomeric silencing. Other Htz1-activated genes flank the silent HMR mating-type locus. Their requirement for Htz1 can be bypassed by sir2Delta or by a deletion encompassing the silencing nucleation sites in HMR. In htz1Delta cells, Sir2 and Sir3 spread into flanking euchromatic regions, producing changes in histone H4 acetylation and H3 4-methylation indicative of ectopic heterochromatin formation. Htz1 is enriched in these euchromatic regions and acts synergistically with a boundary element to prevent the spread of heterochromatin. Thus, euchromatin and heterochromatin each contains components that antagonize switching to the opposite chromatin state.  相似文献   

8.
9.
10.
11.
关于组蛋白甲基化的研究   总被引:3,自引:0,他引:3  
李想  张飞雄 《遗传》2004,26(2):244-248
主要阐述了组蛋白甲基转移酶的类型,组蛋白H3中第9位赖氨酸甲基化与异染色质的形成、常染色体中基因表达的调控,以及与DNA甲基化之间的关系,说明了组蛋白甲基化与组蛋白乙酰化、磷酸化的相互关系, 指出组蛋白甲基化对维持细胞各种状态的平衡起到极其重要的作用。 Abstract: The types of histone methyltransferases, the relationship between methylation of Lysine 9 of H3 and the formation of heterochromatin, gene regulation in euchromatin, and that with DNA methylation, were mainly introduced. The interrelation between histone methylation and histone acetylation/phosphorylation was summarized. It is showed that histone methylation plays a very important role in maintaining the balance state of cell. The future research tendency of histone methylation was fantanstic.  相似文献   

12.
Dot1 methylates histone H3 lysine 79 (H3K79) on the nucleosome core and is involved in Sir protein-mediated silencing. Previous studies suggested that H3K79 methylation within euchromatin prevents nonspecific binding of the Sir proteins, which in turn facilitates binding of the Sir proteins in unmethylated silent chromatin. However, the mechanism by which the Sir protein binding is influenced by this modification is unclear. We performed genome-wide synthetic genetic array (SGA) analysis and identified interactions of DOT1 with SIR1 and POL32. The synthetic growth defects found by SGA analysis were attributed to the loss of mating type identity caused by a synthetic silencing defect. By using epistasis analysis, DOT1, SIR1, and POL32 could be placed in different pathways of silencing. Dot1 shared its silencing phenotypes with the NatA N-terminal acetyltransferase complex and the conserved N-terminal bromo adjacent homology (BAH) domain of Sir3 (a substrate of NatA). We classified all of these as affecting a common silencing process, and we show that mutations in this process lead to nonspecific binding of Sir3 to chromatin. Our results suggest that the BAH domain of Sir3 binds to histone H3K79 and that acetylation of the BAH domain is required for the binding specificity of Sir3 for nucleosomes unmethylated at H3K79.  相似文献   

13.
14.
Role of histone and DNA methylation in gene regulation   总被引:3,自引:0,他引:3  
  相似文献   

15.
16.
Heterochromatin underpins gene repression, genome integrity, and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing of a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin. Two structurally unrelated compounds, HMS-I1 and HMS-I2, alleviated kanMX silencing and decreased repressive H3K9 methylation levels at the transgene. The decrease in methylation caused by HMS-I1 and HMS-I2 was observed at all loci regulated by histone methylation, including centromeric repeats, telomeric regions, and the mating-type locus, consistent with inhibition of the histone deacetylases (HDACs) Clr3 and/or Sir2. Chemical-genetic epistasis and expression profiles revealed that both compounds affect the activity of the Clr3-containing Snf2/HDAC repressor complex (SHREC). In vitro HDAC assays revealed that HMS-I1 and HMS-I2 inhibit Clr3 HDAC activity. HMS-I1 also alleviated transgene reporter silencing by heterochromatin in Arabidopsis and a mouse cell line, suggesting a conserved mechanism of action. HMS-I1 and HMS-I2 bear no resemblance to known inhibitors of chromatin-based activities and thus represent novel chemical probes for heterochromatin formation and function.  相似文献   

17.
We characterized human SirT1, one of the human homologs of the budding yeast Sir2p, an NAD+-dependent histone deacetylase involved in establishing repressive chromatin and increased life span. SirT1 deacetylates histone polypeptides with a preference for histone H4 lysine 16 (H4-K16Ac) and H3 lysine 9 (H3-K9Ac) in vitro. RNAi-mediated decreased expression of SirT1 in human cells causes hyperacetylation of H4-K16 and H3-K9 in vivo. SirT1 interacts with and deacetylates histone H1 at lysine 26. Using an inducible system directing expression of SirT1 fused to the Gal4-DNA binding domain and a Gal4-reporter integrated in euchromatin, Gal4-SirT1 expression resulted in the deacetylation of H4-K16 and H3-K9, recruitment of H1 within the promoter vicinity, drastically reduced reporter expression, and loss of H3-K79 methylation, a mark restricting silenced chromatin. We propose a model for SirT1-mediated heterochromatin formation that includes deacetylation of histone tails, recruitment and deacetylation of histone H1, and spreading of hypomethylated H3-K79 with resultant silencing.  相似文献   

18.
19.
Frankel S  Rogina B 《Aging cell》2005,4(1):53-56
Two highly conserved histone deacetylases, Sir2 and Rpd3, have been linked to caloric restriction and the extension of longevity. Because the Drosophila forms of each protein can silence genes in either euchromatin or heterochromatin, we determined whether longevity extension is mediated by silencing in the latter domain. When silencing was increased and decreased using mutations that affect heterochromatin protein 1 (HP1), but have no direct effect upon Sir2 or Rpd3, lifespan was unaffected. Heterochromatin-mediated gene silencing was then modulated without directly influencing HP1 as well as the deacetylases, again yielding no effect on lifespan. Mortality rates were unchanged by all manipulations, indicating that euchromatic targets are likely to be the effectors of deacetylase-mediated longevity extension in Drosophila [corrected]  相似文献   

20.
Li F  Huarte M  Zaratiegui M  Vaughn MW  Shi Y  Martienssen R  Cande WZ 《Cell》2008,135(2):272-283
In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号