首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of rat neutrophils with fura-2-acetoxy-methyl ester (fura-2/AM) resulted in the loading of fura-2 almost exclusively into the cytoplasm. Despite the additional presence of fura-2/AM esterase activity in the granules, only 1.5% of cell-associated fura-2 was located within these organelles. Fura-2 leaked from neutrophils at an acceptably low rate 0.16 +/- 0.05% min-1 at 37 degrees C. At intracellular concentrations of fura-2 up to 500 microM, there was no effect on oxidase activation; although the cellular ATP content was reduced to approximately 50%. The peptide, f-met-leu-phe (fmlp), 1 microM, produced intensity changes of fluorescence excited at 340nm and 380nm which were consistent with a cytoplasmic Ca2+ rise from the resting level of 94 +/- 13nM to 768 +/- 173nM (n = 6). Intracellular concentrations of fura-2 greater than 1mM were required to buffer effectively this rise, and it was estimated that an intracellular fura-2 concentration required for a high signal:autofluorescence ratio (100 microM) the cytoplasmic Ca2+ buffering capacity of the cells was increased by only 10%. The rise in cytoplasmic free Ca2+ induced by the peptide preceded activation of the oxidase by several seconds, and the magnitude of the response was dependent on the extent of the Ca2+ rise, half-maximal activation being achieved at approx. 600nM. These data were therefore consistent with a secondary messenger role for cytoplasmic Ca2+ in triggering neutrophil oxidase activation.  相似文献   

2.
The neuroblastoma-like cell line N2A and the pheochromocytoma-like cell line PC12 excrete about 20-25% of the intracellular fluorescent Ca2+ indicator fura-2 during 10 min of incubation at 37 degrees C. The drug probenecid, known to inhibit membrane systems for the transport of organic anions [Cunningham, Israili & Dayton (1981) Clin. Pharmacol. 6, 135-151], inhibited fura-2 excretion in both cell types. However, probenecid also had untoward effects on intracellular Ca2+ homeostasis in N2A and PC12 cells. We therefore tested the drug sulphinpyrazone, another known inhibitor of organic-anion transport systems. Sulphinpyrazone fully inhibited excretion of fura-2 at 250 microM, a concentration one order of magnitude lower than that of probenecid. At this concentration and for incubation times up to 20 min, sulphinpyrazone had no untoward effects on cell viability and metabolic functions. Fura-2 was also loaded into the cytoplasm of N2A cells by permeabilization of the plasma membrane with extracellular ATP. In this case as well, the dye was rapidly released from the cells and the efflux was blocked by sulphinpyrazone. These findings suggest that N2A and PC12 cells possess a membrane system for the transport of the free-acid form of fura-2. This transport system is probably responsible for the excretion of fura-2 from these cells. Incubation of N2A and PC12 cells with sulphinpyrazone may help overcome problems arising in the investigation of [Ca2+]i homeostasis in these cell types.  相似文献   

3.
We report here the use of the fluorescent Ca2+-chelator fura-2 to directly measure free Ca2+ concentration within intact human erythrocytes and the influence of viscosity on the fluorescence of this probe. The bright fluorescence of fura-2 has permitted the use of low concentrations of indicator and cells, thus minimizing the screening effect and the intrinsic fluorescence of haemoglobin. Erythrocytes (10(8) cells/ml) were loaded with 0.5 microM fura-2AM then diluted at 10(7) cells per ml for measurements. The extracellular signal was suppressed by addition of manganese ions just before recording spectra. Under these conditions, a blood sample of 100 microliter was sufficient for analysis. To study the influence of viscosity on fura-2 fluorescence, gelatin and polyvinylpyrrolidone at various concentrations were added to a physiological buffer to perform fura-2-Ca fluorescence standard curves. Fluorescence intensities and the apparent affinity constant for Ca2+ were modified by viscosity. When intra-erythrocytic viscosity was simulated with 21 g/l polyvinylpyrrolidone to obtain a mean viscosity of 14 mPa.s similar to that observed in human erythrocytes, the mean value of free Ca2+ concentration measured in erythrocytes from healthy subjects was 78 +/- 16 nM (mean +/- S.D., n = 29).  相似文献   

4.
Rat heart mitochondria were incubated for 5 min at 30 degrees C and at approx. 40 mg protein.ml-1 and in the presence of 10 microM fura-2/AM. This allowed the entrapment of free fura-2 within the mitochondrial matrix and its use as a probe for Ca2+, but without affecting the apparent viability of the mitochondria. Parallel measurements of the activities of the intramitochondrial Ca2+-sensitive enzymes, pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase, allowed an assessment of their sensitivity to measured free Ca2+ within intact mitochondria incubated under different conditions; the enzymes responded to matrix Ca2+ over the approximate range 0.02-2 microM with half-maximal effects at about 0.3-0.6 microM Ca2+. Effectors of Ca2+-transport across the inner membrane (e.g., Na+, Mg2+, Ruthenium red, spermine) did not appear to affect these ranges, but did bring about expected changes in Ca2+ distribution across this membrane. Significantly, when mitochondria were incubated in the presence of physiological concentrations of both Na+ and Mg2+, and at low extramitochondrial Ca2+ (less than 400 nM), there was a gradient of Ca2+ (in:out) of less than unity; at higher extramitochondrial [Ca2+] (but still within the physiological range) the gradient was greater than unity indicating a highly cooperative nature of transmission of the Ca2+ signal into the matrix under such conditions.  相似文献   

5.
The cytosolic free calcium ion concentration ([Ca2+]i) of individual lymphocytes was measured by microfluorometry with dual excitation wavelengths using quin 2 for fura-2. Fura-2 was a more suitable fluorescent Ca2+ indicator than quin 2 for measurements of single cells because of the standard curve calibrated for fura-2 had a good linearity, and the standard deviation (SD) of the value of the intensity ratio of fura-2-loaded cells was much smaller than that of quin 2-loaded cells. The [Ca2+]i in quiescent lymphocytes was about 1 x 10(-7) M, and an increase in the [Ca2+]i was observed within a few minutes of ionomycin, protein A, phorbol myristate acetate (PMA) or concanavalin A (Con A) stimulation. Ionomycin-induced proliferation occurred when the initial [Ca2+]i was approximately 3 x 10(-7) M or greater. The increase in the [Ca2+]i induced by Con A occurred transiently, and another rise in the [Ca2+]i was observed in the stage prior to the S-phase. These results indicate that Ca2+ is necessary for stimulated lymphocytes to enter the cell cycle and S-phase.  相似文献   

6.
C. Brownlee  J. W. Wood  D. Briton 《Protoplasma》1987,140(2-3):118-122
Summary Cytoplasmic free calcium concentration has been measured in centric diatoms using Fura-2. Cells hydrolysed Fura-2 acetoxymethyl ester and accumulated free Fura-2 in the cytoplasm. The [Ca2+] distribution in two species (Coccinodiscus concinnus andGuinardia flaccida) has been mapped using digital image analysis.Abbreviations [Ca cyt 2+ ] Cytoplasmic free calcium concentration - Quin-2/AM Quin-2 acetoxymethyl ester - Fura-2/AM Fura-2 acetoxymethyl ester DMSO dimethyl sulphoxide - CCTV closed circuit television  相似文献   

7.
Fura-2 loaded pancreatic beta-cells, isolated from obese hyperglycemic mice, were studied with respect to cytoplasmic free Ca2+ concentration ([Ca2+]i), insulin release and efflux of indicator. In the absence of glucose there was a continuous efflux of fura-2, which was markedly increased by stimulation with a high concentration of the sugar. Probenecid both reduced basal efflux of fura-2 and prevented that promoted by glucose. There was no interference of the drug with glucose-induced either insulin release or rise in [Ca2+]i. When applying fura-2 in pancreatic beta-cells, the use of probenecid markedly improves the measurements of [Ca2+]i.  相似文献   

8.
The influence of the transmembrane Na+ gradient on the intracellular free calcium concentration, [Ca2+]i, was studied in Sepharose gel-filtered platelets from healthy human subjects, using the Ca-sensitive fluorescent dye, fura-2. Raising the internal Na+ concentration, [Na+]i, by Na+ pump inhibition with 0.05 mM ouabain, without changing external Na+ did not cause a significant increase in [Ca2+]i. Substitution of extracellular Na+ by iso-osmolar sucrose induced a rapid (half-time about 2 min) and significant rise in [Ca2+]i; this effect was amplified in Na-loaded platelets. Partial restitution of external Na+ in these cells with increased [Ca2+]i promoted a significant and rapid Na+ concentration-dependent fall in [Ca2+]i; little decline in [Ca2+]i was observed if K+ was used instead of Na+. These observations represent in vitro evidence for the existence of a Na/Ca exchange mechanism in human platelets that may, in vivo, participate in the control of [Ca2+]i.  相似文献   

9.
Fura-2 is one of the most commonly used fluorescent dyes to analyze the cytosolic Ca(2+) concentration ([Ca(2+)](i)) of living cells. Fura-2-dependent measurements of [Ca(2+)](i) are susceptible to changes of pH, reactive oxygen species concentration and membrane potential. Fura-2 is often loaded over the lipophilic cell membrane into the cytosol of a cell in its esterified form (Fura-2/AM) which is then cleaved by endogenous esterases. We have analyzed the electrochemical properties of Fura-2/AM and Fura-2 salt by cyclic voltammetry ("three-phase" and "thin-film" electrode methods). Using Fura-2/AM as a redox facilitator, we were able to mimic the transport of various ions across a lipophilic barrier. We show that Fura-2/AM in this biomimetic set-up can be reversibly oxidized in a single electrochemical step. Its redox reaction was highly proton sensitive in buffers with pH< or =6. At physiological pH of around 7.0, the oxidation of Fura-2/AM was coupled to an uptake of mono-anions across the liquid-liquid interface. The voltage-dependence of the redox cycle was sensitive to the free Ca(2+) concentration, either after de-esterification of Fura-2/AM, or when Fura-2 salt was used. The complex between Fura-2 and Ca(2+) ions is ionic (complexation occurs via the dissociated negative groups of Fura forms), while the redox transformations in Fura-2 occurs at the nitrogen atoms of the amino groups. Our results suggest that redox transformations of the Fura-2 forms do not affect the binding ability toward Ca(2+) ions and thus do not interfere with [Ca(2+)](i) measurements.  相似文献   

10.
Isolated rat heart myocytes were loaded with both the Ca2+ sensitive fluorescent probe fura-2/AM and the fluorescent pH indicator 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF/AM). Changes in [Ca2+]i and pHi were measured simultaneously using digitized video fluorescence microscopy. In measurement of [Ca2+]i and pHi, the ratios of dual-loaded cells were not different from single-loaded cells. Using this method, [Ca2+]i and pHi in myocytes were 48 +/- 7 nM and 7.17 +/- 0.05. It is concluded that [Ca2+]i and pHi could be measured simultaneously in isolated myocyte using dual-loading of fura-2 and BCECF.  相似文献   

11.
Binding of the fluorescent Ca2+ indicator dye fura-2 by intracellular constituents has been investigated by steady-state optical measurements. Fura-2's (a) fluorescence intensity, (b) fluorescence emission anisotropy, (c) fluorescence emission spectrum, and (d) absorbance spectra were measured in glass capillary tubes containing solutions of purified myoplasmic proteins; properties b and c were also measured in frog skeletal muscle fibers microinjected with fura-2. The results indicate that more than half, and possibly as much as 85%, of fura-2 molecules in myoplasm are in a protein-bound form, and that the binding changes many properties of the dye. For example, in vitro characterization of the Ca2+-dye reaction indicates that when fura-2 is bound to aldolase (a large and abundant myoplasmic protein), the dissociation constant of the dye for Ca2+ is three- to fourfold larger than that measured in the absence of protein. The problems raised by intracellular binding of fura-2 to cytoplasmic proteins may well apply to cells other than skeletal muscle fibers.  相似文献   

12.
The use of Fura-2 to estimate myoplasmic [Ca2+] in human skeletal muscle   总被引:2,自引:0,他引:2  
Fura-2 was used to estimate myoplasmic [Ca2+] in intact fibers and fiber segments from normal and diseased human muscles. Small muscle bundles (20-50 fibers) were loaded with the membrane-permeant form of the dye (Fura-2 AM). High-performance liquid chromatography was utilized to study the ability of these cells to hydrolyze Fura-2 AM. Immediately after the 30 min loading period, Fura-2 (the Ca2+ indicator) was the predominant form of the dye in all preparations and the concentration within these fibers remained stable for over 4 1/2 hours. In addition, the resting myoplasmic [Ca2+] in fiber segments from normal subjects and those susceptible to malignant hyperthermia were the same. However, halothane administration (1.5%) induced correlated increases in myoplasmic [Ca2+] and force only in fibers from the susceptible patients. In contrast, caffeine administration causes correlated increases in myoplasmic [Ca2+] and force in both types of muscle, but lower concentrations were needed to do so in the fibers from the susceptible patients. The effects of halothane and caffeine were reversible. We conclude that Fura-2 can be used successfully to estimate resting levels and changes in myoplasmic [Ca2+] in human skeletal muscle.  相似文献   

13.
Fura-2-am, the pentaester precursor of the fluorescent Ca(2+) indicator fura-2, is modified when it is exposed to isolated skeletal muscle sarcoplasmic reticulum vesicles. The modified fura-2-am has enhanced fluorescence, is not sensitive to Ca(2+), and is partially bound to the SR membrane. The isolated product is further converted into fura-2 by esterase. It is suggested that the SR-induced modification is a selective enzymatic hydrolysis of only some of the five ester moieties on fura-2-am. A structure is proposed to account for the results. The potential for this effect of SR on fura-2-am to cause complications in measurements of in vivo intracellular free [Ca(2+)] is noted.  相似文献   

14.
During stimulation of Dictyostelium discoideum amoebae with the chemoattractant cAMP, extracellular calcium is taken up by the cells. The aim of this study was to determine the cytosolic free calcium concentration ([Ca++]i) during chemotaxis of Dictyostelium cells. In contrast to most vertebrate cells, three major drawbacks were encountered: 1) the indicator fura-2 could not be introduced into the cells by incubation with the ester form, 2) once loaded, the dye was rapidly sequestered into vesicles, 3) the organic anion transport blocker probenecid was not suitable to block sequestration. These problems were met by introducing the indicator into the cells with the scrape-loading technique adapted for use with Dictyostelium and the construction of a new fura-2 derivative, fura-2-dextran. Scrape-loading of Dictyostelium yielded up to 40% of labeled, vital cells. Fura-2-dextran fulfilled the following criteria: 1) it remained homogeneously distributed in the cytoplasm of motile Dictyostelium cells, 2) it retained the fluorescence intensity of fura-2 and the affinity for calcium binding, 3) it was very well suitable to demonstrate changes of [Ca++]i in serum-stimulated fibroblasts. [Ca++]i-measurements with fura-2-dextran in chemotactically active D. discoideum amoebae revealed that the large decrease in the extracellular calcium concentration is not accompanied by an overall change in [Ca++]i. Chemotaxis in this organism occurs in the absence of global changes in [Ca++]i. However, we cannot exclude either short-lived or local changes just beneath the plasma membrane.  相似文献   

15.
Two questions bearing on the use of fura-2 to measure transient changes in intracellular Ca2+ concentration have been addressed. To investigate fura-2 intracellular binding, the amounts of fura-2 and [14C]glycine in Balanus nubilus myofibrillar bundles after loading were determined and their intracellular apparent diffusion constants measured. No significant fura-2 immobilisation occurs under the conditions used. The apparent diffusion constant for fura-2 in aqueous solution was determined. The relationship between half-time for relaxation of force and fura-2 fluorescence transients, and intracellular fura-2 concentration, in voltage-clamped single muscle fibres was examined. Significant buffering of the Ca2+ transient occurred at fura-2 concentrations above approximately 6 microM.  相似文献   

16.
P Hochstrate  A Juse 《Cell calcium》1991,12(10):695-712
The retinal tissue of blowflies was loaded with the fluorescent Ca2+ indicator Fura-2 by incubating cut heads in saline solutions which contained the membrane permeable acetoxymethylester of Fura-2 (Fura-2/AM). The spectral analysis of the tissue fluorescence showed that Fura-2/AM was intracellularly hydrolysed to Fura-2. In order to monitor the intracellular free Ca2+ concentration ([Ca2+]i) the Fura-2 fluorescence was excited by short light flashes. The fluorescence was calibrated by incubating the tissue in Ca2+ buffers of high buffering capacity and subsequent disruption of the cell membranes by freeze/thawing, which gave a dissociation constant for the Ca(2+)-Fura-2 complex of 100 nM. When the extracellular Ca2+ concentration ([Ca2+]o) was altered [Ca2+]i reversibly changed. The changes were most pronounced when [Ca2+]o was varied in the millimolar range, e.g. [Ca2+]i increased from 0.07 microM at [Ca2+]o = 0.1 mM to 1 microM at [Ca2+]o = 10 mM. When extracellular Na+ was replaced by Li+ or other monovalent ions, [Ca2+]i rapidly increased which supports the view that electrogenic Na+/Ca2+ exchange contributes to the control of [Ca2+]i. However, [Ca2+]i decreased again when the tissue was superfused with Na(+)-free media for longer periods, which points to a Ca(2+)-transporting system different from Na+/Ca2+ exchange. Light adaptation had only a small effect on [Ca2+]i. Even after intense stimulation [Ca2+]i increased by a factor of 1.5 only, which is in line with results obtained in the photoreceptors of Balanus and Apis.  相似文献   

17.
We studied intracellular binding and possible compartmentalization of the fluorescent Ca2+ indicators, indo-1 and fura-2, in single mammalian cardiac ventricular cells that had been loaded with indo-1 and fura-2 by exposure to the acetoxymethylester form of the indicators (indo-1/AM and fura-2/AM). Techniques similar to those used in experiments on fluorescence recovery after photobleaching (FRAP) were used. It was assumed that reversible binding in myoplasm would be evident as slowed recovery of fluorescence after photobleaching, and that irreversible binding of the indicators to immobile myoplasmic sites (or "compartmentalization" in organelles) would be evident as incomplete recovery. Through the use of a mask, one half of a cell was exposed to high-intensity ultraviolet (UV) light to bleach the indo-1 or fura-2 in only that part of the cell. Upon removal of the mask and termination of the high-intensity UV illumination, fluorescence recovered in the bleached half of the cell, indicating diffusion of indo-1 and fura-2. Mathematical modeling of the diffusional redistribution of the indicators indicated that in these cells the apparent diffusion coefficient for indo-1 is 1.57 x 10(-7) cm2 s-1 (SD 0.48 x 10(-7) cm2 s-1; n = 5 cells, 21 degrees C), and for fura-2 is 3.19 x 10(-7) cm2 s-1 (SD 1.85 x 10(-7) cm2 s-1; n = 6 cells, 21 degrees C). These values are approximately 6 and 3, respectively, times smaller than those expected for free diffusion in the myoplasm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Experiments were carried out to test the hypothesis that mM concentrations of fura-2, a high-affinity Ca2+ buffer, inhibit the release of Ca2+ from the sarcoplasmic reticulum (SR) of skeletal muscle fibers. Intact twitch fibers from frog muscle, stretched to a long sarcomere length and pressure-injected with fura-2, were activated by an action potential. Fura-2's absorbance and fluorescence signals were measured at different distances from the site of fura-2 injection; thus, the myoplasmic free Ca2+ transient (delta [Ca2+]) and the amount and rate of SR Ca2+ release could be estimated at different myoplasmic concentrations of fura-2 ([fura-2T]). At [fura-2T] = 2-3 mM, the amplitude and half-width of delta [Ca2+] were reduced to approximately 25% of the values measured at [fura-2T] less than 0.15 mM, whereas the amount and rate of SR Ca2+ release were enhanced by approximately 50% (n = 5; 16 degrees C). Similar results were observed in experiments carried out at low temperature (n = 2; 8.5-10.5 degrees C). The finding of an enhanced rate of Ca2+ release at 2-3 mM [fura-2T] is opposite to that reported by Jacquemond et al. (Jacquemond, V., L. Csernoch, M. G. Klein, and M. F. Schneider. 1991. Biophys. J. 60:867-873) from analogous experiments carried out on cut fibers. In two experiments involving the injection of larger amounts of fura-2, reductions in SR Ca2+ release were observed; however, we were unable to decide whether these reductions were due to [fura-2T] or to some nonspecific effect of the injection itself. These experiments do, however, suggest that if large [fura-2T] inhibits SR Ca2+ release in intact fibers, [fura-2T] must exceed 6 mM to produce an effect comparable to that reported by Jacquemond et al. in cut fibers. Our clear experimental result that 2-3 mM [fura-2T] enhances SR Ca2+ release supports the proposal that delta [Ca2+] triggered by an action potential normally feeds back to inhibit further release of Ca2+ from the SR (Baylor, S.M., and S. Hollingworth. 1988. J. Physiol. [Lond.]. 403:151-192). Our results provide no support for the hypothesis that Ca(2+)-induced Ca2+ release plays a significant role in excitation-contraction coupling in amphibian skeletal muscle.  相似文献   

19.
The new, fluorescent Ca2+ indicator, fura-2, promises to expand our understanding of the role of subcellular changes in Ca2+ underlying cell function. During an investigation of the role of Ca2+ in the polarization response of human polymorphonuclear leukocytes to formyl-methionyl-leucyl-phenylalanine, we found that fura-2 trapped by cells incubated with the acetoxy-methyl ester of fura-2, F2-AM, yielded measurements of Ca2+ that were depressed at rest and during the response to formyl-methionyl-leucyl-phenylalanine. Fura-2, trapped by the cells, exhibited a spectrum in the presence of saturating Ca2+ that differed from that of fura-2 free acid. We have shown that the cellular fluorescence can be spectrally decomposed into two components: one with Ca2+ sensitivity identical to fully deesterified fura-2, and another which is Ca2+-insensitive. The Ca2+-insensitive component appears to be more fluorescent than F2-AM as well as spectrally different from F2-AM. The insensitive form probably results from incomplete deesterification of F2-AM by the cells. In order to accurately measure Ca2+ in polymorphonuclear leukocytes, it is imperative to check for the presence of Ca2+-insensitive fluorescence. The contribution of Ca2+-insensitive fura-2 fluorescence can be assessed routinely from spectral data obtained by calibration of intracellular fura-2 with known [Ca2+] using ionomycin. The end-of-experiment calibration step not only ensures accurate [Ca2+] measurements in polymorphonuclear leukocytes and in other cell types that display Ca2+-insensitive, contaminating fluorescence but also yields the spectral characteristics of the insensitive species.  相似文献   

20.
Quintana A  Hoth M 《Cell calcium》2004,36(2):99-109
Fura-2 is the most common dye to measure cytosolic Ca2+ concentrations ([Ca2+]i). To facilitate simultaneous imaging of many cells while preserving their cytosolic environment, fura-2 is often loaded into the cytosol in its membrane-permeant ester form. It has been reported that small amounts of fura-2 accumulate in intracellular compartments, an effect that is usually neglected. We show that either focal or non-focal stimulation methods induce large [Ca2+]i gradients in T-lymphocytes during both, Ca2+ release and Ca2+ influx across the plasma membrane. Interfering with mitochondrial Ca2+ homeostasis and by labeling mitochondria with MitoTracker, we demonstrate that [Ca2+]i gradients co-localize with mitochondria and are attributable to mitochondrial fura-2 sequestration. Gradients could not be avoided by different loading protocols, compromising measurements of "real" [Ca2+]i gradients following T-cell stimulation. They were observed in human blood and lamina propria lymphocytes, Jurkat T-cells, mast cells, but not to the same extent in HEK-293 cells. Finally, we show that T-lymphocytes can be efficiently loaded with the membrane-impermeant fura-2 salt by electroporation and by osmotic lysis of pinocytic vesicles, which result in the loss of [Ca2+]i gradients. These methods are therefore suitable to study localized Ca2+ signals in large populations of T-cells while preserving their cytosolic integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号