首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
甲醛已被广泛用于人们的日常生活中,成为室内环境的主要污染源.为探讨甲醛对动物不同发育阶段的毒性,本文以模式生物果蝇Drosophila melanogaster为对象,研究了饲料中添加不同浓度甲醛对果蝇生长发育的影响.结果显示,当对照组发育至3龄幼虫(孵化后3d)时,与未添加甲醛的对照组相比,饲料中添加0.25%或0....  相似文献   

2.
The Rho sub-family of GTPases, comprising Rho, Rac and Cdc42. regulates many biological processes, including morphogenesis, cell polarity, migration, the cell cycle and gene expression. It is important to develop genetic approaches to allow the dissection, in vivo, of the mechanisms of GTPase regulation and signal transmission, and their biological consequences. In this regard, wing development in Drosophila melanogaster is an excellent model system. To investigate the functions of the Drosophila Cdc42 GTPase (Dcdc42), we generated phenotypes during wing development, by expression of the dominant-negative N17 and L89 mutants of Dcdc42. We have identified roles for Dcdc42 in wing growth, and in cell fate choice during the development of the wing veins and the peripheral nervous system. Reduction of Dcdc42 signalling following over-expression of Dcdc42N17 resulted in a broader but more diffuse domain characterised by wing-margin sensory bristles. This was correlated with a broadened stripe of wingless expression along the dorsal-ventral boundary of third-instar wing imaginal discs. Together with genetic interactions with loss- and gain-of-function Notch alleles, these data support a role for wild-type Dcdc42 as a negative regulator of Notch signalling.  相似文献   

3.
Heat shock proteins and aging in Drosophila melanogaster   总被引:5,自引:0,他引:5  
Heat shock proteins (Hsps) are conserved molecular chaperones that are upregulated following exposure to environmental stress and during aging. The mechanisms underlying the aging process are only beginning to be understood. The beneficial effects of Hsps on aging revealed in mild stress and overexpression experiments suggest that these proteins are part of an important cell protection system rather than being unspecific molecular chaperones. Among the Hsps families, small Hsps have the greatest influence on aging and the modulation of their expression during aging in Drosophila suggest that they are involved in pathways of longevity determination.  相似文献   

4.
  • 1.1. The ontogenesis of proteins in Drosophila melanogaster has been studied by starch-gel electrophoresis.
  • 2.2. A total of nineteen discrete fractions appear during development from egg to adult in the stock used.
  • 3.3. Three protein fractions are present in the egg, one in the first-instar larva, six in the second-instar, eight in the early third-instar, eleven in the late third-instar, seven in the pupa and nine in the adult. The adult pattern is significantly different from the others.
  • 4.4. There is a definite trend for small-molecule proteins to appear early in development, and the larger molecular compounds only in the later stages.
  •   相似文献   

5.
Several reports from mammals indicate that an increase in the mutation rate in late-replicating regions may, in part, be responsible for the observed genomic heterogeneity in neutral substitution rates and levels of diversity, although the mechanisms for this remain poorly understood. Recent evidence also suggests that late replication is associated with high mutability in yeast. This then raises the question as to whether a similar effect is operating across all eukaryotes. Limited evidence from one chromosome arm in Drosophila melanogaster suggests the opposite pattern, with regions overlapping early-firing origins showing increased levels of diversity and divergence. Given the availability of genome-wide replication timing profiles for D. melanogaster, we now return to this issue. Consistent with what is seen in other taxa, we find that divergence at synonymous sites in exon cores, as well as divergence at putatively unconstrained intronic sites, is elevated in late-replicating regions. Analysis of genes with low codon usage bias suggests a ~30% difference in mutation rate between the earliest and the latest replicating sequence. Intronic sequence suggests a more modest difference. We additionally show that an increase in diversity in late-replicating sequences is not owing to replication timing covarying with the local recombination rate. If anything, the effects of recombination mask the impact of replication timing. We conclude that, contrary to prior reports and consistent with what is seen in mammals and yeast, there is indeed a relationship between rates of nucleotide divergence and diversity and replication timing that is consistent with an increase in the mutation rate during late S-phase in D. melanogaster. It is therefore plausible that such an effect might be common among eukaryotes. The result may have implications for the inference of positive selection.  相似文献   

6.
7.
8.
9.
Hyperactivation of p53 leads to a reduction in tumor formation and an unexpected shortening of life span in two different model systems . The decreased life span occurs with signs of accelerated aging, such as osteoporosis, reduction in body weight, atrophy of organs, decreased stress resistance, and depletion of hematopoietic stem cells. These observations suggest a role for p53 in the determination of life span and the speculation that decreasing p53 activity may result in positive effects on some aging phenotypes . In this report, we show that expression of dominant-negative versions of Drosophila melanogaster p53 in adult neurons extends life span and increases genotoxic stress resistance in the fly. Consistent with this, a naturally occurring allele with decreased p53 activity has been associated with extended survival in humans . Expression of the dominant-negative Drosophila melanogaster p53 constructs does not further increase the extended life span of flies that are calorie restricted, suggesting that a decrease in p53 activity may mediate a component of the calorie-restriction life span-extending pathway in flies.  相似文献   

10.
Merte J  Nichols R 《Peptides》2002,23(4):757-763
Drosophila melanogaster TDVDHVFLRFamide (DMS), SDNFMRFamide, and pEVRFRQCYFNPISCF (FLT) represent three structurally distinct peptide families. Each peptide decreases heart rate albeit with different magnitudes and time-dependent responses. DMS and FLT are expressed in the crop and decrease crop motility; however, SDNFMRFamide expression and effect on the crop has not been reported. These data suggest the peptides have different physiological roles. The peptides have non-overlapping expression patterns in neural tissue, which suggests different mechanisms regulate their synthesis and release. The structures, expression patterns, and activities of the myotropins suggest they have important but different roles in biology and different signaling pathways.  相似文献   

11.
12.
The Drosophila salivary gland is proving to be an excellent experimental system for understanding how cells commit to specific developmental programs and, once committed, how cells implement such decisions. Through genetic studies, the factors that determine where salivary glands will form, the number of cells committed to a salivary gland fate, and the distinction between the two major cell types (secretory cells and duct cells) have been discovered. Within the next few years, we will learn the molecular details of the interactions among the salivary gland regulators and salivary gland target genes. We will also learn how the early-expressed salivary gland genes coordinate their activities to mediate the morphogenetic movements required to form the salivary gland and the changes in cell physiology required for high secretory activity.  相似文献   

13.
Mutations in the Caenorhabditis elegans sel-9 gene elevate the activity of lin-12 and glp-1, which encode members of the LIN-12/NOTCH family of receptors. Sequence analysis indicates SEL-9 is one of several C. elegans p24 proteins. Allele-specific genetic interactions suggest that reducing sel-9 activity increases the activity of mutations altering the extracellular domains of LIN-12 or GLP-1. Reducing sel-9 activity restores the trafficking to the plasma membrane of a mutant GLP-1 protein that would otherwise accumulate within the cell. Our results suggest a role for SEL-9 and other p24 proteins in the negative regulation of transport of LIN-12 and GLP-1 to the cell surface, and favor a role for p24 proteins in a quality control mechanism for endoplasmic reticulum-Golgi transport.  相似文献   

14.
Abstract  The effect of (1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea) insecticide – diflubenzuron – on wild type and white type fruit flies Drosophila melanogaster (Meigen, 1830) was studied. Adult insects were placed in vials with different concentrations of the insecticide in the nutrient (from 0.048 to 48 mg of diflubenzuron per 1 cm3 of the nutrient). In each case, the insects showed some mortality, which was concentration-dependant. When comparing both strains, we could observe different acute toxicities, with wild type being more resistant to diflubenzuron. However, subacute toxicity was similar within both strains. In both strains the prolonged exposure led to the extinction of the majority of the populations (>70%). Although imagoes could freely copulate, we did not observe copulating fruit flies, and we did not find either eggs or larvae in any of the exposed groups. These results indicate that genetic mutation which leads to different eye colour can also affect resistance and survival of insects in pesticide-exposed areas.  相似文献   

15.
Monoclonal antibodies have previously been raised against chromosomal proteins of Drosophila. Using a biochemical fractionation method for the isolation of large hnRNA-containing structures (hnRNP) of Drosophila tissue culture cells, we show that seven of these antibodies recognize different antigens, and that these antigens are associated with RNA. Analysis of the sedimentation behavior of antigen-containing structures in sucrose gradients reveals that the antigens are differentially distributed with respect both to one another and to pulse-labeled RNA. We demonstrate that the antigens are minor components of hnRNP and are different from the major Drosophila hnRNP packaging proteins, which we have also identified. The antigens are probably involved in the processing of hnRNA in the nucleus.  相似文献   

16.
The ability to form selective cell-cell adhesions is an essential property of metazoan cells. Members of the cadherin superfamily are important regulators of this process in both vertebrates and invertebrates. With the advent of genome sequencing projects, determination of the full repertoire of cadherins available to an organism is possible and here we present the identification and analysis of the cadherin repertoires in the genomes of Caenorhabditis elegans and Drosophila melanogaster. Hidden Markov models of cadherin domains were matched to the protein sequences obtained from the translation of the predicted gene sequences. Matches were made to 21 C. elegans and 18 D. melanogaster sequences. Experimental and theoretical work on C. elegans sequences, and data from ESTs, show that three pairs of genes, and two triplets, should be merged to form five single genes. It also produced sequence changes at one or both of the 5' and 3' termini of half the sequences. In D. melanogaster it is probable that two of the cadherin genes should also be merged together and that three cadherin genes should be merged with other neighbouring genes.Of the 15 cadherin proteins found in C. elegans, 13 have the features of cell surface proteins, signal sequences and transmembrane helices; the other two have only signal sequences. Of the 17 in D. melanogaster, 11 at present have both features and another five have transmembrane helices. The evidence currently available suggests about one-third of the cadherins in the two organisms can be grouped into subfamilies in which all, or parts of, the molecules are conserved. Each organism also has a approximately 980 residue protein (CDH-11 and CG11059) with two cadherin domains and whose sequences match well over their entire length two proteins from human brain. Two proteins in C. elegans, HMR-1A and HMR-1B, and three in D. melanogaster, CadN, Shg and CG7527, have cytoplasmic domains homologous to those of the classical cadherin genes of chordates but their extracellular regions have different domain structures. Other common subclasses include the seven-helix membrane cadherins, Fat-like protocadherins and the Ret-like cadherins. At present, the remaining cadherins have no obvious similarities in their extracellular domain architecture or homologies to their cytoplasmic domains and may, therefore, represent species-specific or phylum-specific molecules.  相似文献   

17.
18.
19.
Dopamine is an important signaling molecule in the nervous system; it also plays a vital role in the development of diverse non-neuronal tissues in the fruit fly Drosophila melanogaster. The current study demonstrates that males depleted of dopamine as third instar larvae (via inhibition of the biosynthetic enzyme tyrosine hydroxylase) demonstrated abnormalities in courtship behavior as adults. These defects were suggestive of abnormalities in sensory perception and/or processing. Electroretinograms (ERGs) of eyes from adults depleted of dopamine for 1 day as third instar larvae revealed diminished or absent on- and off-transients. These sensory defects were rescued by the addition of L-DOPA in conjunction with tyrosine hydroxylase inhibition during the larval stage. Depletion of dopamine in the first or second larval instar was lethal, but this was not due to a general inhibition of proliferative cells. To establish that dopamine was synthesized in tissues destined to become part of the adult sensory apparatus, transgenic lines were generated containing 1 or 4 kb of 5' upstream sequences from the Drosophila tyrosine hydroxylase gene (DTH) fused to the E. coli beta-galactosidase reporter. The DTH promoters directed expression of the reporter gene in discrete and consistent patterns within the imaginal discs, in addition to the expected expression in gonadal, brain, and cuticular tissues. The beta-galactosidase expression colocalized with tyrosine hydroxylase protein. These results are consistent with a developmental requirement for dopamine in the normal physiology of adult sensory tissues.  相似文献   

20.
Identification of vitelline membrane proteins in Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster, proteins involved in vitelline membrane production are secreted by ovarian follicle cells during stages 9 and 10 of oogenesis. We have used SDS-PAGE and two-dimensional electrophoresis to identify six major size classes of radiolabeled components in purified vitelline membrane preparations. Analyses of in vivo labeled proteins from egg chambers of different developmental stages and stage 10 follicle cells show that components of five of these size classes are synthesized by follicle cells during the period of vitelline membrane deposition. Immunological analysis of eggshell antigens utilizing complex antisera raised to purified eggshell fragments has confirmed the identity of components of three size classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号