首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sulfonamides of halogenated bacteriochlorins bearing Cl or F substituents in the ortho positions of the phenyl rings have adequate properties for photodynamic therapy, including strong absorption in the near-infrared (λ(max) ≈ 750 nm, ε ≈ 10(5) M(-1) cm(-1)), controlled photodecomposition, large cellular uptake, intracellular localization in the endoplasmic reticulum, low cytotoxicity, and high phototoxicity against A549 and S91 cells. The roles of type I and type II photochemical processes are assessed by singlet oxygen luminescence and intracellular hydroxyl radical detection. Phototoxicity of halogenated sulfonamide bacteriochlorins does not correlate with singlet oxygen quantum yields and must be mediated both by electron transfer (superoxide ion, hydroxyl radicals) and by energy transfer (singlet oxygen). The photodynamic efficacy is enhanced when cellular death is induced by both singlet oxygen and hydroxyl radicals.  相似文献   

2.
A new area of the investigation of visual and bacterial rhodopsins--fluorescence spectroscopy of the pigments is discussed. Fluorescence properties are considered in relation to photochemical transformations of the pigments at low temperatures. A number of fluorescent states of the pigments are described. It is shown that the excited states of bacteriorhodopsin and visual rhodopsin are characterized by a series of common features. The analysis of general properties of the pigments excited states allows a conclusion that the singlet excited states take part in the photoreaction. The photoreaction scheme is discussed in which structural changes of the chromophore take place already in the excited state.  相似文献   

3.
Plasmalogens are phospholipids containing a vinyl-ether linkage at the sn-1 position of the glycerophospholipid backbone. Despite being quite abundant in humans, the biological role of plasmalogens remains speculative. It has been postulated that plasmalogens are physiological antioxidants with the vinyl-ether functionality serving as a sacrificial trap for free radicals and singlet oxygen. However, no quantitative data on the efficiency of plasmalogens at scavenging these reactive species are available. In this study, rate constants of quenching of singlet oxygen, generated by photosensitized energy transfer, by several plasmalogens and, for comparison, by their diacyl analogs were determined by time-resolved detection of phosphorescence at 1270nm. Relative rates of the interactions of singlet oxygen with plasmalogens and other lipids, in solution and in liposomal membranes, were measured by electron paramagnetic resonance oximetry and product analysis using HPLC-EC detection of cholesterol hydroperoxides and iodometric assay of lipid hydroperoxides. The results show that singlet oxygen interacts with plasmalogens significantly faster than with the other lipids, with the corresponding rate constants being 1 to 2 orders of magnitude greater. The quenching of singlet oxygen by plasmalogens is mostly reactive in nature and results from its preferential interaction with the vinyl-ether bond. The data suggest that plasmalogens could protect unsaturated membrane lipids against oxidation induced by singlet oxygen, providing that the oxidation products are not excessively cytotoxic.  相似文献   

4.
It is shown that the weak IR absorption bands corresponding to the forbidden triplet-singlet transitions in oxygen molecules can be reliably studied in air-saturated solvents under ambient conditions using measurements of the photooxygenation rates of singlet oxygen traps (1,3-diphenylisobenzofuran or uric acid) upon direct excitation of oxygen molecules by IR diode lasers. The best results were obtained from comparison of the oxygenation rates upon direct and photosensitized singlet oxygen excitation. In the present paper, this method was applied to estimation of the absorbance (A(ox)) and molar absorption coefficients (ε(ox)) corresponding to the oxygen absorption bands at 765 and 1273 nm in carbon tetrachloride, acetone, alcohols and water. In carbon tetrachloride, the band at 1073 nm was also investigated. Correlation of the obtained data with the luminescence spectra and radiative rate constants of singlet oxygen, contribution of oxygen dimols and biological significance of the studied effects are discussed.  相似文献   

5.
Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.  相似文献   

6.
Chromatophores from photosynthetic bacteria were excited with flashes lasting approx. 15 ns. Transient optical absorbance changes not associated with the photochemical electron-transfer reactions were interpreted as reflecting the conversion of bacteriochlorophyll or carotenoids into triplet states. Triplet states of various carotenoids were detected in five strains of bacteria; triplet states of bacteriochlorophyll, in two strains that lack carotenoids. Triplet states of antenna pigments could be distinguished from those of pigments specifically associated with the photochemical reaction centers. Antenna pigments were converted into their triplet states if the photochemical apparatus was oversaturated with light, if the primary photochemical reaction was blocked by prior chemical oxidation of P-870 or reduction of the primary electron acceptor, or if the bacteria were genetically devoid of reaction centers. Only the reduction of the electron acceptor appeared to lead to the formation of triplet states in the reaction centers.In the antenna bacteriochlorophyll, triplet states probably arise from excited singlet states by intersystem crossing. The antenna carotenoid triplets probably are formed by energy transfer from triplet antenna bacteriochlorophyll. The energy transfer process has a half time of approx. 20 ns, and is about 1 × 103 times more rapid than the reaction of the bacteriochlorophyll triplet states with O2. This is consistent with a role of carotenoids in preventing the formation of singlet O2 in vivo. In the absence of carotenoids and O2, the decay half times of the triplet states are 70 μs for the antenna bacteriochlorophyll and 6–10 μs for the reaction center bacteriochlorophyll. The carotenoid triplets decay with half times of 2–8 μs.With weak flashes, the quantum yields of the antenna triplet states are in the order of 0.02. The quantum yields decline severely after approximately one triplet state is formed per photosynthetic unit, so that even extremely strong flashes convert only a very small fraction of the antenna pigments into triplet states. The yield of fluorescence from the antenna bacteriochlorophyll declines similarly. These observations can be explained by the proposal that singlet-triplet fusion causes rapid quenching of excited singlet states in the antenna bacteriochlorophyll.  相似文献   

7.
Studies of the fluorescence quantum yield and decay times, determined at the emission maxima of 685 and 735 nm, using picosecond laser pulses for excitation, indicate that the pigments which are responsible for the 735 nm emission derive their energy by transfer of singlet excitons from the light-harvesting pigments and not by direct absorption of photons. Microsecond pulse laser studies of the fluorescence quantum yields at these two fluorescence wavelengths indicate that long lived quenchers (most probably triplet states), which quench singlet excitons, accumulate preferentially within the long wavelength pigment system which gives rise to the 735 nm emission band.  相似文献   

8.
The singlet excited states in the optimized geometries of bicyclo[2.2.0]hexasilane and tricyclo[4.2.0.02,5]octasilane are studied theoretically using the ab initio molecular orbital method at the RHF/3-21G* level with the all-singles CI approximation. These molecules are found to have zigzag structures in both the ground states and the singlet excited states corresponding to the lowest absorptions, and the estimated Stokes shifts between the lowest absorption and fluorescence are similar to the experimental values.  相似文献   

9.
Chlorosomes comprise thousands of bacteriochlorophylls (BChl c, d, or e) in a closely packed structure surrounded by a lipid-protein envelope and additionally contain considerable amounts of carotenoids, quinones, and BChl a. It has been suggested that carotenoids in chlorosomes provide photoprotection by rapidly quenching triplet excited states of BChl via a triplet-triplet energy transfer mechanism that prevents energy transfer to oxygen and the formation of harmful singlet oxygen. In this work we studied triplet energy transfer kinetics and photodegradation of chlorosomes isolated from wild-type Chlorobium tepidum and from genetically modified species with different types of carotenoids and from a carotenoid-free mutant. Supporting a photoprotective function of carotenoids, carotenoid-free chlorosomes photodegrade approximately 3 times faster than wild-type chlorosomes. However, a significant fraction of the BChls forms a long-lived, triplet-like state that does not interact with carotenoids or with oxygen. We propose that these states are triplet excitons that form due to triplet-triplet interaction between the closely packed BChls. Numerical exciton simulations predict that the energy of these triplet excitons may fall below that of singlet oxygen and triplet carotenoids; this would prevent energy transfer from triplet BChl. Thus, the formation of triplet excitons in chlorosomes serves as an alternative photoprotection mechanism.  相似文献   

10.
Singlet oxygen is regarded as contributing to the pathogenesis of various diseases including light-induced skin disorders and inflammatory response. In this study, the correlation between singlet oxygen quenching activity (SOQA) of human serum and blood biochemistry or life-style was evaluated. Healthy volunteers were recruited and carried out a measurement of SOQA by using electron paramagnetic resonance (EPR) and a questionnaire survey about a smoking. It was demonstrated that major quenchers of singlet oxygen in serum are proteins, and small molecular anti-oxidants relatively play a minor role. SOQA of whole sera showed no correlation with protein concentration, but positively correlated with SOQA of small molecular fraction. In vitro studies demonstrated that the decrease of sulfhydryl groups by NO or superoxide significantly attenuated SOQA of albumin. Together, these results may imply that the underlying oxidative condition in each individual influences both small molecular antioxidant states and the sulfhydryl content of serum proteins. SOQA of sera from women with a smoking history was significantly lower compared to non-smoking women, suggesting that the smoking habit impaired the defense mechanism against singlet oxygen.  相似文献   

11.
The photochemical generation of excited states of oxygen such as the superoxide ion(O-2) and singlet oxygen (1o2) by the mild illumination of culture medium containing riboflavin induces benzo(alpha)pyrene mono-oxygenase in 3 different cell lines derived from rat liver. Similar rates of O-2 generation can be produced by the action of xanthine oxidase on xanthine yet this system does not induce the mono-oxygenase. This result confirms that the mono-oxygenase induction is not mediated by O-2 is not mediated by O-2 and that 1O2 is the most likely candidate for stimulating the mono-oxygenase activity.  相似文献   

12.
In the most efficient solar cells based on blends of a conjugated polymer (electron donor) and a fullerene derivative (electron acceptor),ultrafast formation of charge‐transfer (CT) electronic states at the donor‐acceptor interfaces and efficient separation of these CT states into free charges, lead to internal quantum efficiencies near 100%. However, there occur substantial energy losses due to the non‐radiative recombinations of the charges, mediated by the loweset‐energy (singlet and triplet) CT states; for example, such recombinations can lead to the formation of triplet excited electronic states on the polymer chains, which do not generate free charges. This issue remains a major factor limiting the power conversion efficiencies (PCE) of these devices. The recombination rates are, however, difficult to quantify experimentally. To shed light on these issues, here, an integrated multi‐scale theoretical approach that combines molecular dynamics simulations with quantum chemistry calculations is employed in order to establish the relationships among chemical structures, molecular packing, and non‐radiative recombination losses mediated by the lowest‐energy charge‐transfer states.  相似文献   

13.
The electronic higher-order polarizabilities of linear and cyclic polymethine systems withelectron donor and acceptor groups included in the conjugation systems, in the ground and first excited singlet and triplet states, are studied using semiempirical quantum-chemical calculations (MNDO and PPP-DCI). It is shown that these polarizabilities are determined by two main factors: the bond order alternation in the conjugated system and the magnitude of the electron transfer within the molecule. The effect oftrans-cis isomerisation of the linear polymethines is also studied.  相似文献   

14.
Laser-flash-induced transient absorption measurements were performed on trimeric light-harvesting complex II to study carotenoid (Car) and chlorophyll (Chl) triplet states as a function of temperature. In these complexes efficient transfer of triplets from Chl to Car occurs as a protection mechanism against singlet oxygen formation. It appears that at room temperature all triplets are being transferred from Chl to Car; at lower temperatures (77 K and below) the transfer is less efficient and chlorophyll triplets can be observed. In the presence of oxygen at room temperature the Car triplets are partly quenched by oxygen and two different Car triplet spectral species can be distinguished because of a difference in quenching rate. One of these spectral species is replaced by another one upon cooling to 4 Ki demonstrating that at least three carotenoids are in close contact with chlorophylls. The triplet minus singlet absorption (T-S) spectra show maxima at 504-506 nm and 517-523 nm, respectively. In the Chl Qy region absorption changes can be observed that are caused by Car triplets. The T-S spectra in the Chl region show an interesting temperature dependence which indicates that various Car's are in contact with different Chl a molecules. The results are discussed in terms of the crystal structure of light-harvesting complex II.  相似文献   

15.
Results are presented from experimental and theoretical studies of the production of singlet delta oxygen in a pulsed electron-beam-sustained discharge ignited in a large (~18-1) volume at a total gas mixture pressure of up to 210 Torr. The measured yield of singlet oxygen reaches 10.5%. It is found that varying the reduced electric field from ~2 to ~11 kV/(cm atm) slightly affects singlet oxygen production. It is shown experimentally that an increase in the gas mixture pressure or the specific input energy reduces the duration of singlet oxygen luminescence. The calculated time evolution of the singlet oxygen concentration is compared with experimental results.  相似文献   

16.
Gram-negative and gram-positive bacteria were found to display different sensitivities to pure singlet oxygen generated outside of cells. Killing curves for Salmonella typhimurium and Escherichia coli strains were indicative of multihit killing, whereas curves for Sarcina lutea, Staphylococcus aureus, Streptococcus lactis, and Streptococcus faecalis exhibited single-hit kinetics. The S. typhimurium deep rough strain TA1975, which lacks nearly all of the cell wall lipopolysaccharide coat and manifests concomitant enhancement of penetration by some exogenous substances, responded to singlet oxygen with initially faster inactivation than did the S. typhimurium wild-type strain, although the maximum rates of killing appeared to be quite similar. The structure of the cell wall thus plays an important role in susceptibility to singlet oxygen. The outer membrane-lipopolysaccharide portion of the gram-negative cell wall initially protects the bacteria from extracellular singlet oxygen, although it may also serve as a source for secondary reaction products which accentuate the rates of cell killing. S. typhimurium and E. coli strains lacking the cellular antioxidant, glutathione, showed no difference from strains containing glutathione in response to the toxic effects of singlet oxygen. Strains of Sarcina lutea and Staphylococcus aureus that contained carotenoids, however, were far more resistant to singlet oxygen lethality than were both carotenoidless mutants of the same species and other gram-positive species lacking high levels of protective carotenoids.  相似文献   

17.
C Tanielian 《Biochimie》1986,68(6):797-806
This paper discusses the mechanism of photooxygenation reactions sensitized by dyes, such as: rose bengal, methylene blue, tetraphenylporphin and chlorophyll a. First it is shown more particularly that: the quantum yields of singlet oxygen O2(1 delta g) production gamma delta, and of intersystem crossing singlet S1-triplet T1, gamma is, are not always equal and that the possibilities gamma delta greater than or less than gamma is may occur or are observed; the processes S1 + O2(3 sigma)----T1 + O2(3 sigma) and T1 + O2(3 sigma)----S0 + O2(1 delta g) are mainly if not fully responsible for the quenching of the singlet and triplet excited states of the sensitizer by oxygen. Thereafter, clear indication is given of the considerable complication of the photooxygenation which may arise from particular properties of the investigated substrate A (or of other compounds present in the reaction medium) and which may result in a decrease of the oxygenation quantum yield phi O2. It is shown that this lowering of phi O2 is due to that of gamma delta and/or of phi A, (the probability that O2(1 delta g) yields an oxygenation product AO2) since phi O2 = gamma delta phi A. The latter effect can be induced by the quenching of singlet oxygen by the dye, a process which is quite general and which must be always taken into account in kinetic studies.  相似文献   

18.
ESIPT and ESPT are the only photochemical deactivation pathways of the singlet excited states of 2-, 3- and 4-(2'-hydroxyphenyl)pyridines. Due to the existence of an intramolecular hydrogen bond in 2-(2'-hydroxyphenyl)pyridine, ESIPT leads only to protonation of the pyridine nitrogen. On the other hand, the singlet excited states of 3- and 4-(2'-hydroxyphenyl)pyridine undergo protonation of both nitrogen and carbon atoms of the pyridine ring, via ESIPT or ESPT. The extent of ESIPT to carbon (as measured by extent of deuterium incorporation) can be controlled by the amount of water in the solvent system.  相似文献   

19.
Radical ion pairs generated by photo-induced electron transfer from 1,2-disubstituted cyclopropanes to various acceptors undergo return electron transfer in pairs of singlet and triplet multiplicity. The pair energies relative to the reactant ground states and to accessible triplet states, respectively, determine the competition between the recombination pathways. The potential surfaces of the radical cations and triplet states of 1,2-diphenyl-, 1, and 1,2-dimethylcyclopropane, 2, have been examined by density functional theory calculations. The radical cation surfaces have minima at geometries that retain significant bonding between C-1 and C-2, preventing geometric isomerization of the radical cations. The triplet potential surfaces are dissociative with minimal rotational differentiation at long distances between C-1 and C-2.  相似文献   

20.
The temperature dependence of magnetic susceptibility and Mösbauer quadrupole splitting for oxyhemoglobin is considered to arise from contribution from a ground state singlet and two excited triplet electronic states. Using values of parameters obtained from fitting data for both measurements, the plausibility of this hypothesis is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号