首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During gestation and lactation, a series of metabolic changes that are affected by the diet occurs in various organs of the mother. However, little is known about how the dietary protein (DP)/carbohydrate (DCH) ratio regulates the expression of metabolic genes in the mother. Therefore, the purpose of this work was to study the effect of consuming different percentages of DP/DCH, specifically 10/73, 20/63 and 30/53%, on the expression of genes involved in lipogenesis and protein synthesis in the mammary gland, liver and adipose tissue during gestation and lactation in dams. While the amount of weight gained during gestation was similar for all groups, only dams fed with 30/53% DP/DCH maintained their weight during lactation. In the mammary gland, the expression of the genes involved in lipogenesis, specifically SREBP1 and FAS, was dramatically increased, and the expression of the genes involved in protein synthesis, such as mTOR1, and the phosphorylation of its target protein, S6K, were also increased throughout pregnancy and lactation, regardless of the concentration of DP/DCH. In the liver and adipose tissue, the expression of the genes and proteins involved in lipid metabolism was dependent on the proportion of DP/DCH. The consumption of a low-protein/high-carbohydrate diet increased the expression of lipogenic genes in the liver and adipose tissue and the amount of lipid deposition in the liver. Conversely, the consumption of a high-protein/low-carbohydrate diet increased the expression of genes involved in amino acid oxidation in the liver during gestation. The metabolic adaptations reflected by the changes in the expression of metabolic genes indicate that the mammary gland has a priority for milk synthesis, whereas the adaptations in the liver and adipose tissue are responsible for providing nutrients to the mammary gland to sustain milk synthesis.  相似文献   

2.
Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [13C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed.  相似文献   

3.
MicroRNAs (miRNAs), a well-defined group of small RNAs containing about 22 nucleotides, participate in various biological metabolic processes. miR-27a is a miRNA that is known to regulate fat synthesis and differentiation in preadipocyte cells. However, little is known regarding the role that miR-27a plays in regulating goat milk fat synthesis. In this study, we determined the miR-27a expression profile in goat mammary gland and found that miR-27a expression was correlated with the lactation cycle. Additionally, prolactin promoted miR-27a expression in goat mammary gland epithelial cells. Further functional analysis showed that over-expression of miR-27a down-regulated triglyceride accumulation and decreased the ratio of unsaturated/saturated fatty acid in mammary gland epithelial cells. miR-27a also significantly affected mRNA expression related to milk fat metabolism. Specifically, over-expression of miR-27a reduced gene mRNA expression associated with triglyceride synthesis by suppressing PPARγ protein levels. This study provides the first experimental evidence that miR-27a regulates triglyceride synthesis in goat mammary gland epithelial cells and improves our understanding about the importance of miRNAs in milk fat synthesis.  相似文献   

4.
5.
The aim of this experiment was to demonstrate the ability of feeding serotonin (5-HT; 5-hydroxytryptamine) precursors to increase 5-HT production during the transition from pregnancy to lactation and the effects this has on maternal energy metabolism in the liver and mammary gland. Pregnant rats (n = 45) were fed one of three diets: I) control (CON), II) CON supplemented with 0.2% 5-hydroxytryptophan (5-HTP) or III) CON supplemented with 1.35% L-tryptophan (L-TRP), beginning on d13 of pregnancy through d9 of lactation (d9). Serum (pre and post-partum), milk (daily), liver and mammary gland tissue (d9) were collected. Serum 5-HT was increased in the 5-HTP fed dams beginning on d20 of gestation and remained elevated through d9, while it was only increased on d9 in the L-TRP fed dams. 5-HT levels were increased in mammary gland and liver of both groups. Additionally, 5-HTP fed dams had serum and milk glucose levels similar to the CON, while L-TRP had decreased serum (d9) and milk glucose (all dates evaluated). Feeding 5-HTP resulted in increased mRNA expression of key gluconeogenic and glycolytic enzymes in liver and glucose transporters 1 and 8 (GLUT-1, -8) in the mammary gland. We demonstrated the location of GLUT-8 in the mammary gland both in the epithelial and vascular endothelial cells. Finally, phosphorylated 5′ AMP-activated protein kinase (pAMPK), a known regulator of intracellular energy status, was elevated in mammary glands of 5-HTP fed dams. Our results suggest that increasing 5-HT production during the transition from pregnancy to lactation increases mRNA expression of enzymes involved in energy metabolism in the liver, and mRNA abundance and distribution of glucose transporters within the mammary gland. This suggests the possibility that 5-HT may be involved in regulating energy metabolism during the transition from pregnancy to lactation.  相似文献   

6.
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P < 0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P < 0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.  相似文献   

7.
8.
Uptake of radioactively labelled insulin by the mammary gland of the rat increased 12-fold in lactation compared with non-lactating controls. This uptake was decreased by the presence of unlabelled insulin, indicating that it occurred via insulin receptors. The plasma half-life of insulin is decreased in lactation from 9.4 min to 4.8 min, and the metabolic clearance rate for insulin increased from 7.26 to 13.03 ml/kg body wt. per min. The basal insulin and glucose concentrations in the plasma were decreased in lactation. Infusion of insulin at a dose which led to a small physiological rise in plasma insulin concentration increased lipogenic rates in the mammary gland by 100% without causing marked hypoglycaemia. It is concluded that the lactating mammary gland is a highly insulin-sensitive tissue and that the lower plasma insulin during lactation occurs primarily as a result of this sensitivity increasing extraction of glucose by the gland and thus producing a decrease in the plasma glucose concentration. It is suggested that a secondary result of the fall in plasma insulin concentration is the preferential direction of substrates (glucose and non-esterified fatty acids) towards the lactating mammary gland and away from adipose tissue and the liver.  相似文献   

9.
Rodents are able to lower fatty acid utilization in liver and muscle during lactation in order to spare fatty acids for the production of milk triacylglycerols, an effect which is mediated by a down-regulation of peroxisome proliferator-activated receptor α (PPARα). The present study was performed to investigate whether similar fatty acid sparing effects are developing in lactating sows. We considered PPARα and its target genes involved in fatty acid utilization in biopsy samples from muscle and adipose tissue of lactating compared to non-lactating sows. In muscle, PPARα target genes involved in fatty acid utilization were up-regulated during lactation indicating that the fatty acid utilization in muscle was increased. Activation of PPARα was probably due to increased concentrations of non-esterified fatty acids in plasma observed in the lactating sows. In contrast to muscle, PPARα and its target genes involved in β-oxidation in white adipose tissue were down-regulated in early lactation. Overall, the present study shows that sows, unlike rats, are not able to reduce the fatty acid utilization in muscle in order to spare fatty acids for milk production. However, fatty acid oxidation in adipose tissue is lowered during early lactation, an effect that might be helpful to conserve fatty acids released from adipose tissue for the delivery into other tissues, including mammary gland, via the blood.  相似文献   

10.
Mammary function in the conscious goat was studied during colchicine-induced depression of milk secretion in one mammary gland. Milk yield of the treated gland was reduced to approximately a quarter of previous, while there were significant increases in afternoon milk yield from the untreated glands on the 2nd and 3rd days after treatment in goats in late lactation. Milk composition in the untreated glands was not significantly affected. In the treated gland, milk [Na+], [Cl-], [citrate] and [protein] increased while [K+] and [lactose] decreased, although the time course of these changes differed; milk [fat] was unaffected. Mammary extractions ((A-V)/A) of glucose, acetate and most amino acids were significantly decreased during the period of maximal inhibition of secretion. There were no significant changes in arterial plasma concentrations of glucose, acetate or any essential amino acids. In another series of experiments, mammary blood flow increased and then returned to normal after colchicine treatment even though milk yield and mammary glucose uptake decreased markedly; oxygen uptake was not significantly affected. The results are discussed in relation to the actions of colchicine on the mammary secretory cell, to the normal control of mammary blood flow and to the mechanism of compensation by the untreated gland.  相似文献   

11.
The zinc transporter ZnT2 (SLC30A2) imports zinc into vesicles in secreting mammary epithelial cells (MECs) and is critical for zinc efflux into milk during lactation. Recent studies show that ZnT2 also imports zinc into mitochondria and is expressed in the non-lactating mammary gland and non-secreting MECs, highlighting the importance of ZnT2 in general mammary gland biology. In this study we used nulliparous and lactating ZnT2-null mice and characterized the consequences on mammary gland development, function during lactation, and milk composition. We found that ZnT2 was primarily expressed in MECs and to a limited extent in macrophages in the nulliparous mammary gland and loss of ZnT2 impaired mammary expansion during development. Secondly, we found that lactating ZnT2-null mice had substantial defects in mammary gland architecture and MEC function during secretion, including fewer, condensed and disorganized alveoli, impaired Stat5 activation, and unpolarized MECs. Loss of ZnT2 led to reduced milk volume and milk containing less protein, fat, and lactose compared with wild-type littermates, implicating ZnT2 in the regulation of mammary differentiation and optimal milk production during lactation. Together, these results demonstrate that ZnT2-mediated zinc transport is critical for mammary gland function, suggesting that defects in ZnT2 not only reduce milk zinc concentration but may compromise breast health and increase the risk for lactation insufficiency in lactating women.  相似文献   

12.
An understanding of the mechanisms regulating milk yield in sows is crucial for producers to make the best management decisions during lactation. Suckling of mammary glands by piglets is one factor that is essential for development of these glands during lactation and for the maintenance of lactation in sows. The process of mammary development is not static as the majority of it takes place in the last third of gestation, continues during lactation, is followed by involution at weaning and starts over again in the next gestation. During involution, the mammary glands undergo a rapid and drastic regression in parenchymal tissue, and this can also occur during lactation if a gland is not suckled regularly. Indeed, the pattern of regression is similar for glands that involute at weaning or during lactation. Suckling during 12 to 14 h postpartum is insufficient to maintain lactation and the process of involution that occurs in early lactation is reversible within 1 day of farrowing but is irreversible if a gland is not used for 3 days. However, milk yield from a gland which is ‘rescued’ within the first 24 h remains lower throughout lactation. Suckling does not only affect milk yield in the ongoing lactation, but it also seems to affect that of the next lactation. Indeed, non-suckling of a mammary gland in first-parity sows decreased development and milk yield of that gland in second parity. Nursing behaviour of piglets in early lactation was also affected, where changes were indicative of piglets in second parity being hungrier when suckling glands that were not previously used. It is not known, however, if the same effects would be seen between the second and third lactation. Furthermore, the minimum suckling period required to ensure maximal milk yield from a gland in the next lactation is not known. This review provides an update on our current knowledge of the importance of suckling for mammary development and milk yield in swine.  相似文献   

13.
1. The rate of mammary-gland lipogenesis measured in vivo from 3H2O was suppressed after decreasing the milk demand by decreasing the number of pups from ten to two or three, as well as by giving diets containing lipid [Grigor & Warren (1980) Biochem. J. 188, 61-65]. 2. The specific activities of the lipogenic enzymes fatty acid synthase, glucose 6-phosphate dehydrogenase and 'malic' enzyme increased between 6- and 10-fold in the mammary gland and between 2- and 3-fold in the livers during the first 10 days of lactation. The increases in specific activity coupled with the doubling of liver mass which occurred during pregnancy and lactation resulted in considerable differences in total liver activities when compared with virgin animals. 3. Although consumption of a diet containing 20% peanut oil suppressed the activities of the three lipogenic enzymes in the livers, only the 'malic' enzyme was affected in the mammary glands. 4. In contrast, decreased milk demand did not affect the specific activities of any of the liver enzymes, whereas it resulted in suppression of all three lipogenic enzymes of the mammary glands. There was no effect on either the cytoplasmic malate dehydrogenase or the lactate dehydrogenase of the mammary gland. 5. In all the experiments performed, the activity of the fatty acid synthase correlated with the amount of material precipitated by the rabbit antibody raised against rat fatty acid synthase.  相似文献   

14.
A total of 3200 milk samples from Holstein and Jersey cows were analysed for free glucose and glucose-6-phosphate (G6P) by an enzymatic-fluorometric method that requires no pre-treatment. The cows were primiparous as well as multiparous, and samples were taken throughout the entire lactation period. In addition, lactose, protein, fat, citrate and β-hydroxybutyrate were determined and comparisons between these variables were made. Data were analysed using GLM model for the effect of parity, breed, time from last milking and stage of lactation on variations in parameters in milk. Pearson’s correlations were generated between milk variables. P<0.05 was considered significant. Concentration of free glucose and G6P were on average 331 and 81 μM, respectively. Time from last milking (stay in the gland cistern) did not increase the concentration of these monosaccharides, indicating that they are not hydrolysis product from lactose post secretion, but rather reflecting the energy status of the mammary epithelial cells pre-secretion. Wide variation in range of these metabolites, that is, from 90 to 630 μM and 5 to 324 μM, for glucose and G6P, respectively, was observed. During the first 21 weeks in milk, free glucose increased whereas G6P decreased. Concentration of free glucose in milk is greater for primiparous than multiparous cows and greater for Holstein than Jersey cows. Concentration of G6P was not affected by parity or breed. The use of free glucose and G6P as indicators of physiological conditions and risk of disease is warranted for use as potential biomarkers for in-line surveillance systems on-farm.  相似文献   

15.
We have investigated, in mice, an in vivo method for producing low-lactose milk, based on the creation of transgenic animals carrying a hybrid gene in which the intestinal lactase-phlorizin hydrolase cDNA was placed under the control of the mammary-specific alpha-lactalbumin promoter. Transgenic females expressed lactase protein and activity during lactation at the apical side of mammary alveolar cells. Active lactase was also secreted into milk, anchored in the outer membrane of fat globules. Lactase synthesis in the mammary gland caused a significant decrease in milk lactose (50-85%) without obvious changes in fat and protein concentrations. Sucklings nourished with low-lactose milk developed normally. Hence, these data validate the use of transgenic animals expressing lactase in the mammary gland to produce low-lactose milk in vivo, and they demonstrate that the secretion of an intestinal digestive enzyme into milk can selectively modify its composition.  相似文献   

16.
During lactation, branched-chain aminotransferase (BCAT) gene expression increases in the mammary gland. To determine the cell type and whether this induction is present only during lactation, female rats were randomly assigned to one of three experimental groups: pregnancy, lactation, or postweaning. Mammary gland BCAT activity during the first days of pregnancy was similar to that of virgin rats, increasing significantly from day 16 to the last day of pregnancy. Maximal BCAT activity occurred on day 12 of lactation. During postweaning, BCAT activity decreased rapidly to values close to those observed in virgin rats. Analyses by Western and Northern blot revealed that changes in enzyme activity were accompanied by parallel changes in the amount of enzyme and its mRNA. Immunohistochemical studies of the mammary gland showed a progressive increase in mitochondrial BCAT (mBCAT)-specific staining of the epithelial acinar cells during lactation, reaching high levels by day 12. Immunoreactivity decreased rapidly after weaning. There was a significant correlation between total BCAT activity and milk production. These results indicate that the pattern of mBCAT gene expression follows lactogenesis stages I and II and is restricted to the milk-producing epithelial acinar cells. Furthermore, BCAT activity is associated with milk production in the mammary gland during lactation.  相似文献   

17.
Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis.  相似文献   

18.
1. Activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), isocitrate dehydrogenase (EC 1.1.1.42), malate dehydrogenase (EC 1.1.1.37), malate dehydrogenase (decarboxylating) (EC 1.1.1.40), and pyruvate carboxylase (EC 6.4.1.1) were determined in subcellular fractions of mammary gland from rabbits during pregnancy, at different stages of lactation and during weaning. The results were compared with those obtained in similar experiments with rat mammary gland. 2. Three bases of expression of the activity of enzymes in the particle-free supernatant fraction of mammary gland were compared. During lactation, activity expressed per mg. of particle-free supernatant protein (uncorrected for milk protein) correlated well with that expressed per mug. of DNA phosphorus. The disadvantages of expressing activities per g. wet wt. are discussed. 3. The major differences between the two tissues were: (a) neither malate dehydrogenase (decarboxylating) nor a soluble form of pyruvate carboxylase could be detected in rabbit mammary gland at any stage of the lactation cycle; (b) isocitrate dehydrogenase increased in activity during lactation in rabbit mammary gland, but not in that of the rat. 4. Pyruvate carboxylase in the mitochondrial fraction of rabbit mammary gland, and in both the mitochondrial and the soluble fractions of rat mammary gland, did not change in activity during lactation. 5. For each tissue, the NADP-dependent dehydrogenases studied had a high activity at all stages of the lactation cycle compared with the rate of fatty acid synthesis at mid-lactation. The significance of these results is discussed with respect to the supply of NADPH via NADH.  相似文献   

19.
Responses to exogenous growth hormone were measured in lactating dairy cows surgically prepared to allow measurement of nutrient exchanges across mammary and hind-limb muscle tissues. Cows were injected daily with either saline or growth hormone, at a dose of 0.1 mg/kg liveweight, over periods of 6 days. During administration of growth hormone milk yield, milk fat content and yields of milk fat protein and lactose increased. Arterial plasma concentrations of glucose and non-esterified fatty acids were increased, uptake of glucose by leg muscle tissue decreased, lactate release from leg muscle tended to increase, mammary uptake of non-esterified fatty acids increased, blood flow to leg muscle tended to increase and blood flow to mammary tissue increased during injection of growth hormone. The results show that growth hormone affects supply to and utilization of key nutrients by tissues, resulting in the supply to the mammary gland of additional precursors for milk synthesis.  相似文献   

20.
In the pipistrelle bat (Pipistrellus pipistrellus), the metabolic load of lactation is not met to any significant extent by increased food intake or mobilization of body reserves, and aerial foraging accounts for most of the animal's energy expenditure even during lactation. Energy conservation must, therefore, play a critical role in maintaining lactation. The principal mechanism for energy conservation appears to be the bat's ability to enter torpor, but this may itself interrupt milk synthesis and secretion unless the pipistrelle mammary gland is adapted to counteract its effect. The effect of torpor on mammary tissue function was studied in mammary tissue explant cultures prepared in weeks 1-3 of lactation, when milk water yield was 0.20, 0.88, and 0.30 mL/d respectively. Protein synthesis measured by incorporation of radiolabeled amino acids was 44% lower (P < 0.001) in bat tissue explants cultured at ambient temperature (22 degrees C) compared with 37 degrees C. The reduction was similar to that observed in mouse mammary tissue (57%) and was unaffected by stage of lactation. Analysis of explant protein after [35S]methionine labelling showed the majority of proteins synthesised in culture to be milk proteins; it also demonstrated that the decrease in protein synthesis at ambient temperature was a general phenomenon: synthesis of both secretory and intracellular mammary proteins was reduced at the lower culture temperature. The results suggest that bat mammary tissue has no mechanism to counteract the effect of reduced body temperature and that periods of lactational torpor are likely to cause a pronounced diurnal variation in the rate of milk secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号