共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The concept of consensus in multiple sequence alignments (MSAs) has been used to design and engineer proteins previously with some success. However, consensus design implicitly assumes that all amino acid positions function independently, whereas in reality, the amino acids in a protein interact with each other and work cooperatively to produce the optimum structure required for its function. Correlation analysis is a tool that can capture the effect of such interactions. In a previously published study, we made consensus variants of the triosephosphate isomerase (TIM) protein using MSAs that included sequences form both prokaryotic and eukaryotic organisms. These variants were not completely native-like and were also surprisingly different from each other in terms of oligomeric state, structural dynamics, and activity. Extensive correlation analysis of the TIM database has revealed some clues about factors leading to the unusual behavior of the previously constructed consensus proteins. Among other things, we have found that the more ill-behaved consensus mutant had more broken correlations than the better-behaved consensus variant. Moreover, we report three correlation and phylogeny-based consensus variants of TIM. These variants were more native-like than the previous consensus mutants and considerably more stable than a wild-type TIM from a mesophilic organism. This study highlights the importance of choosing the appropriate diversity of MSA for consensus analysis and provides information that can be used to engineer stable enzymes. 相似文献
5.
Human triosephosphate isomerase cDNA and protein structure. Studies of triosephosphate isomerase deficiency in man 总被引:18,自引:0,他引:18
Nine cDNA clones of human adult liver triosephosphate (TP) isomerase have been isolated and characterized. All nine appear to be derived from a single mRNA species. DNA sequencing of one clone, designated pHTPI-5a, defined the last two nucleotides of the methionine initiation codon, the entire 744-nucleotide coding region of the mature polypeptide, and the entire 448-nucleotide 3' untranslated region. The frequency of TP isomerase clones in the cDNA library suggests that TP isomerase mRNA is present in adult liver at approximately 25 copies/cell. A single, low abundance TP isomerase mRNA species was detected in RNA isolated from normal human fibroblast cell lines. Analysis of TP isomerase mRNA levels in cultured fibroblasts of individuals that are homozygous for TP isomerase deficiency revealed normal levels in one and approximately 40% of normal levels in another. From this small patient sampling, it can be concluded that the genetic basis for TP isomerase deficiency is heterogeneous. 相似文献
6.
Nucleotide sequence of the triosephosphate isomerase gene from Aspergillus nidulans: implications for a differential loss of introns 总被引:14,自引:0,他引:14
A functional cDNA from Aspergillus nidulans encoding triosephosphate isomerase (TPI) was isolated by its ability to complement a tpi1 mutation in Saccharomyces cerevisiae. This cDNA was used to obtain the corresponding gene, tpiA. Alignment of the cDNA and genomic DNA nucleotide sequences indicated that tpiA contains five introns. The intron positions in the tpiA gene were compared with those in the TPI genes of human, chicken, and maize. One intron is present at an identical position in all four organisms, two other introns are located in similar positions in A. nidulans and maize, and the remaining two introns are unique to A. nidulans. These Aspergillus-specific introns are located in regions of the protein that were predicted to be interrupted by introns based on analysis of a Go plot of chicken TPI. These comparisons are discussed in relation to the evolution of introns within TPI genes. 相似文献
7.
Altered proteins with triosephosphate isomerase activity in suppressor-containing strains of Bacillus subtilis 总被引:5,自引:3,他引:2
Suppressor mutations in Bacillus subtilis cause the synthesis of a new protein with the enzymatic activity of l-leucine dehydrogenase and two groups of new proteins with the activity of triosephosphate isomerase. The new isoenzymes of triosephosphate isomerase are separable by zone electrophoresis and differ among themselves in elution behavior upon gel permeation chromatography. One group has an apparent average molecular weight of 120,000 to 135,000, which is more than twice that of the wild-type enzyme. Another group appears to be even higher in molecular weight. These data are consistent with the working hypothesis that the new isoenzymes are produced by extension of growing polypeptide chains through one or more chain-terminating triplets, although other mechanisms resulting in alteration of shapes, charges, or associations of the enzymes are not excluded. 相似文献
8.
Rodríguez-Romero A Hernández-Santoyo A del Pozo Yauner L Kornhauser A Fernández-Velasco DA 《Journal of molecular biology》2002,322(4):669-675
Triosephosphate isomerase (TIM) has been proposed as a target for drug design. TIMs from several parasites have a cysteine residue at the dimer interface, whose derivatization with thiol-specific reagents induces enzyme inactivation and aggregation. TIMs lacking this residue, such as human TIM, are less affected. TIM from Entamoeba histolytica (EhTIM) has the interface cysteine residue and presents more than ten insertions when compared with the enzyme from other pathogens. To gain further insight into the role that interface residues play in the stability and reactivity of these enzymes, we determined the high-resolution structure and characterized the effect of methylmethane thiosulfonate (MMTS) on the activity and conformational properties of EhTIM. The structure of this enzyme was determined at 1.5A resolution using molecular replacement, observing that the dimer is not symmetric. EhTIM is completely inactivated by MMTS, and dissociated into stable monomers that possess considerable secondary structure. Structural and spectroscopic analysis of EhTIM and comparison with TIMs from other pathogens reveal that conformational rearrangements of the interface after dissociation, as well as intramonomeric contacts formed by the inserted residues, may contribute to the unusual stability of the derivatized EhTIM monomer. 相似文献
9.
1. Triosephosphate isomerase from Bacillus stearothermophilus is a dimeric enzyme comprising two chemically identical polypeptide chains. 2. The nearly complete amino acid sequence of the subunit polypeptide chain has been established from sequences of tryptic, chymotryptic and lysine-blocked tyrptic fragments of S-[2-14C]carboxymethylated enzyme. Overlaps not established by experimental data have been provisionally established from considerations of sequence homology with previously established sequences for the rabbit, chicken and coelacanth enzymes. The nearly complete sequence of the 249 residues is as follows. (See Text). 3. Comparison of the thermophile and chicken muscle enzymes shows that 40% of the residues are in identical sequence. 4. Correlation of the sequence of the thermophile enzyme with the three-dimensional structure of the muscle enzyme shows that residues in the catalytic site and in the subunit interface are strongly conserved. Possible correlations between sequence changes and thermal stabilisation of the dimeric structure are also noted. 相似文献
10.
Téllez-Valencia A Avila-Ríos S Pérez-Montfort R Rodríguez-Romero A Tuena de Gómez-Puyou M López-Calahorra F Gómez-Puyou A 《Biochemical and biophysical research communications》2002,295(4):958-963
We searched for molecules that selectively inactivate homodimeric triosephosphate isomerase from Trypanosoma cruzi (TcTIM), the parasite that causes Chagas' disease. We found that some benzothiazoles inactivate the enzyme. The most potent were 3-(2-benzothiazolylthio)-propanesulfonic acid, 2-(p-aminophenyl)-6-methylbenzothiazole-7-sulfonic acid, and 2-(2-4(4-aminophenyl)benzothiazole-6-methylbenzothiazole-7-sulfonic acid. Half-maximal inactivation by these compounds was attained with 33, 56, and 8 microM, respectively; in human TIM, half-maximal inactivation required 422 microM, 3.3 mM, and 1.6 mM. In TcTIM, the effect of the benzothiazoles decreased as the concentration of the enzyme was increased. TcTIM has a cysteine (Cys 15) at the dimer interface, whereas human TIM has methionine in that position. In M15C human TIM, the benzothiazole concentrations that caused half-maximal inactivation were much lower than in the wild type. The overall findings suggest that the benzothiazoles perturb the interactions between the two subunits of TcTIM through a process in which the interface cysteine is central in their deleterious action. 相似文献
11.
K Channabasavaiah K M Sivanandaiah 《International journal of peptide and protein research》1975,7(4):281-288
The pentadecapeptide fragment, Trp-Val-Leu-Ala-Tyr-Glu-Pro-Val-Trp-Ala-Ile-Gly-Thr-Gly-Lys, which constitutes a part of the active site of rabbit muscle triosephosphate isomerase has been synthesized. It does not exhibit any catalytic activity typical of triosephosphate isomerase. 相似文献
12.
13.
Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate in the glycolysis-gluconeogenesis metabolism pathway. The Helicobacter pylori TIM gene (HpTIM) was cloned, and HpTIM was expressed and purified. The enzymatic activity of HpTIM for the substrate GAP was determined (K(m) = 3.46 +/- 0.23 mM and k(cat) = 8.8 x 10(4) min(-1)). The crystal structure of HpTIM was determined by molecular replacement at 2.3 A resolution. The overall structure of HpTIM was (beta/alpha)beta(beta/alpha)(6), which resembles the common TIM barrel fold, (beta/alpha)(8); however, a helix is missing after the second beta-strand. The conformation of loop 6 and binding of phosphate ion suggest that the determined structure of HpTIM was in the "closed" state. A highly conserved Arg-Asp salt bridge in the "DX(D/N)G" motif of most TIMs is absent in HpTIM because the sequence of this motif is "(211)SVDG(214)." To determine the significance of this salt bridge to HpTIM, four mutants, including K183S, K183A, D213Q, and D213A, were constructed and characterized. The results suggest that this conserved salt bridge is not essential for the enzymatic activity of HpTIM; however, it might contribute to the conformational stability of HpTIM. 相似文献
14.
The triosephosphate isomerase gene from maize: introns antedate the plant-animal divergence 总被引:39,自引:0,他引:39
We have cloned and characterized a cDNA and genomic DNA for the triosephosphate isomerase expressed in maize roots. The gene is interrupted by eight introns. If we compare this gene with that for the protein in chicken, which has six introns, we see that five of the introns are at identical places, one has shifted by three codons, and two are totally new. This great matching leads us to conclude that the introns were in place before the plant-animal divergence, and that the parental gene had at least eight introns, two of which were lost in the line that leads to animals. 相似文献
15.
16.
Triosephosphate isomerase (TPI; EC 5. 3. 1. 1) displayed on the cell surface of Staphylococcus aureus acts as an adhesion molecule that binds to the capsule of Cryptococcus neoformans, a fungal pathogen. This study investigated the function of TPI on the cell surface of S. aureus and its interactions with biological substances such as fibronectin, fibrinogen, plasminogen, and thrombin were investigated. Binding of TPI to plasminogen was demonstrated by both surface plasmon resonance analysis and Far‐Western blotting. It is suggested that lysine residues contribute to this binding because the interaction was inhibited by ?‐aminocaproic acid. Activation of plasminogen to plasmin by staphylokinase or tissue plasminogen activator decreased in the presence of TPI, whereas TPI was degraded by plasmin. In other experiments, intact S. aureus cells had the ability to both increase and decrease plasminogen activation depending on the number of cells. Several molecules expressed on the surface of S. aureus were predicted to interact with plasminogen, resulting in its increased or decreased activation. These findings indicate that S. aureus sometimes localizes and sometimes disseminates in the host, depending on the molecules expressed under various conditions. 相似文献
17.
18.
Electrophilic catalysis by histidine-95 in triosephosphate isomerase has been probed by using Fourier transform infrared spectroscopy and X-ray crystallography. The carbonyl stretching frequency of dihydroxyacetone phosphate bound to the wild-type enzyme is known to be 19 cm-1 lower (at 1713 cm-1) than that of dihydroxyacetone phosphate free in solution (at 1732 cm-1), and this decrease in stretching frequency has been ascribed to an enzymic electrophile that polarizes the substrate carbonyl group toward the transition state for the enolization. Infrared spectra of substrate bound to two site-directed mutants of yeast triosephosphate isomerase in which histidine-95 has been changed to glutamine or to asparagine show unperturbed carbonyl stretching frequencies between 1732 and 1742 cm-1. The lack of carbonyl polarization when histidine-95 is removed suggests that histidine-95 is indeed the catalytic electrophile, at least for dihydroxyacetone phosphate. Kinetic studies of the glutamine mutant (H95Q) have shown that the enzyme follows a subtly different mechanism of proton transfers involving only a single acid-base catalytic group. These findings suggest an additional role for histidine-95 as a general acid-base catalyst in the wild-type enzyme. The X-ray crystal structure of the H95Q mutant with an intermediate analogue, phosphoglycolohydroxamate, bound at the active site has been solved to 2.8-A resolution, and this structure clearly implicates glutamate-165, the catalytic base in the wild-type isomerase, as the sole acid-base catalyst for the mutant enzyme.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
J M Naidu T R Turner H W Mohrenweiser 《Comparative biochemistry and physiology. B, Comparative biochemistry》1984,79(2):211-217
Significant differences in the thermostability of both glucosephosphate and triosephosphate isomerase were noted among a series of six primate and five nonprimate species. The enzyme structural differences among species, as assessed by thermostability profiling, was greater than expected from electrophoretic mobility patterns. Microheterogeneity of GPI, i.e. differences in thermostability within a species that are not detectable by electrophoresis, was detected in two primate species. Major differences in the levels of erythrocyte enzyme activity were observed with human and cow differing by 18-fold for TPI and baboon and cow differing by seven-fold in GPI activity. 相似文献
20.
We present a comprehensive analysis of the catalytic cycle of the enzyme triosephosphate isomerase (TIM), including both the reactive chemistry and the catalytic loop and side-chain motions. Combining accurate mixed quantum mechanics/molecular mechanics (QM/MM) and protein structure prediction methods, we have modeled both the structural and chemical aspects of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde 3-phosphate (GAP), for which there is a wealth of experimental data. The conjunction of this novel computational approach with the use of the recent near-atomic resolution TIM-DHAP Michaelis complex PDB structure, 1NEY.pdb, has enabled us to obtain robust qualitative and, where available, quantitative agreement with a wide range of experimental data. Among the principal conclusions that we are able to draw are the importance of the monoanionic (as opposed to dianioic) form of the substrate phosphate group in the catalytic cycle, detailed positioning and energetics of the key catalytic residues in the active-site, the flexible nature of Glu165, which favors its direct involvement in the formation of the enediol intermediate, energetics of the open and closed form of the catalytic loop region in the presence and absence of substrate, and quantitative reproduction of various experimentally measured reaction rates, typically to within approximately 1 kcal/mol. Our results are consistent with the available experimental data, and provide an initial picture as to why loop opening when GAP is the product has a higher barrier than when DHAP is the product. 相似文献