首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang YH  Huang K  Lin X  Sun G 《Biochemistry》2007,46(35):10162-10169
Csk and Src are two protein tyrosine kinases that share a similar overall multidomain structural organization and a high degree of sequence homology but have different substrate specificities and regulatory properties. In this study, we generated chimeric kinases of Csk and Src by switching the C-terminal lobes of their catalytic domains, and we characterized their substrate specificity and regulatory properties. First, both Csk and Src phosphorylate Src as a common substrate, but on different Tyr residues. The C-terminal lobes of the kinase catalytic domain determined the site of phosphorylation on Src. Furthermore, toward several physiological substrates of Src, the substrate specificity was also determined by the C-terminal lobe of the catalytic domain regardless of the regulatory domains and the N-terminal lobe of the catalytic domain. Second, Csk and Src represent two general regulatory strategies for protein tyrosine kinases. Csk catalytic domain is inactive and is positively regulated by the regulatory domains, while Src catalytic domain is active and suppressed by its interactions with the regulatory domains. The regulatory properties of the chimeric kinases were more complicated. The regulatory domains and the N-lobe did not fully determine the response to a regulatory ligand, suggesting that the C-lobe also contributes to such responses. On the other hand, the intrinsic kinase activity of the catalytic domain correlates with the identity of the N-lobe. These results demonstrate that the chimeric strategy is useful for detailed dissection of the mechanistic basis of substrate specificity and regulation of protein tyrosine kinases.  相似文献   

3.
Signaling networks have evolved to transduce external and internal information into critical cellular decisions such as growth, differentiation, and apoptosis. These networks form highly interconnected systems within cells due to network crosstalk, where an enzyme from one canonical pathway acts on targets from other pathways. It is currently unclear what types of effects these interconnections can have on the response of networks to incoming signals. In this work, we employ mathematical models to characterize the influence that multiple substrates have on one another. These models build off of the atomistic motif of a kinase/phosphatase pair acting on a single substrate. We find that the ultrasensitive, switch-like response these motifs can exhibit becomes transitive: if one substrate saturates the enzymes and responds ultrasensitively, then all substrates will do so regardless of their degree of saturation. We also demonstrate that the phosphatases themselves can induce crosstalk even when the kinases are independent. These findings have strong implications for how we understand and classify crosstalk, as well as for the rational development of kinase inhibitors aimed at pharmaceutically modulating network behavior.  相似文献   

4.
There is increasing evidence to suggest that cytoplasmic tyrosine kinases of the Src family have a pivotal role in the regulation of a number of cellular processes. Members of this family have been implicated in cellular responses to a variety of extracellular signals, such as those arising from growth factors and cell-cell interactions, as well as in differentiative and developmental processes in both vertebrates and invertebrates. A better understanding of the regulation and of the structure-function relationships of these enzymes might aid in the development of specific ways to interfere with their action, as well as serving as a paradigm for regulation of other protein tyrosine kinases that have SH2 and SH3 domains. In this review we will first discuss the regulation of Src family protein tyrosine kinases, with particular emphasis on their SH2 and SH3 domains. We will then briefly review other non-receptor protein tyrosine kinases that have SH2 and SH3 domains.  相似文献   

5.
6.
The suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine signal transduction. SOCS3 is a key negative regulator of interleuking-6 (IL-6) signal transduction. Furthermore, SOCS3 was shown to be phosphorylated upon treatment of cells with IL-2, and this has been reported to regulate its function and half-life. We set out to investigate whether SOCS3 phosphorylation may play a role in IL-6 signaling. Tyrosine-phosphorylated SOCS3 was detected upon treatment of mouse embryonic fibroblasts with IL-6. Interestingly, the observed SOCS3 phosphorylation does not require SOCS3 recruitment to phosphotyrosine (Tyr(P)) 759 of gp130, and the kinetics of SOCS3 phosphorylation do not match the activation kinetics of the Janus kinases. This suggests that other kinases may be involved in SOCS3 phosphorylation. Using Src and Janus kinase inhibitors as well as Src kinase-deficient mouse embryonic fibroblasts, we provide evidence that Src kinases, which we found to be constitutively active in these cells, are involved in the phosphorylation of IL-6-induced SOCS3. In addition, we found that receptor-tyrosine kinases such as platelet-derived growth factor receptor or epidermal growth factor receptor can very potently phosphorylate IL-6-induced SOCS3. Taken together, these results suggest that SOCS3 phosphorylation is not a JAK-mediated phenomenon but is dependent on the activity of other kinases such as Src kinases or receptor-tyrosine kinases, which can either be constitutively active or activated by an additional stimulus.  相似文献   

7.
Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that gamma-tubulin (gamma-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, gamma-tubulin, and with anti-phosphotyrosine antibody revealed that gamma-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in gamma-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated gamma-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing gamma-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of gamma-tubulin interaction with tubulin dimers or other proteins during neurogenesis.  相似文献   

8.
Lipid rafts are membrane microdomains distinct from caveolae, whose functions in polypeptide growth factor signalling remain unclear. Here we show that in small cell lung cancer (SCLC) cells, specific growth factor receptors such as c-Kit associate with lipid rafts and that these domains play a critical role in the activation of phosphoinositide 3-kinase (PI3K) signalling. The class IA p85/p110alpha associated with Src in lipid rafts and was activated by Src in vitro. Lipid raft integrity was essential for Src activation in response to stem cell factor (SCF) and raft disruption selectively inhibited activation of protein kinase B (PKB)/Akt in response to SCF stimulation. Moreover, inhibition of Src kinases blocked PKB/Akt activation and SCLC cell growth. The use of fibroblasts with targeted deletion of the Src family kinase genes confirmed the role of Src kinases in PKB/Akt activation by growth factor receptors. Moreover a constitutively activated mutant of Src also stimulated PI3K/Akt in lipid rafts, indicating that these microdomains play a role in oncogenic signalling. Together our data demonstrate that lipid rafts play a key role in the activation of PI3K signalling by facilitating the interaction of Src with specific PI3K isoforms.  相似文献   

9.
The epidermal growth factor receptor (EGFR) and the non-receptor protein tyrosine kinases Src and Pyk2 have been implicated in linking a variety of G-protein-coupled receptors (GPCR) to the mitogen-activated protein (MAP) kinase signaling cascade. In this report we apply a genetic strategy using cells isolated from Src-, Pyk2-, or EGFR-deficient mice to explore the roles played by these protein tyrosine kinases in GPCR-induced activation of EGFR, Pyk2, and MAP kinase. We show that Src kinases are critical for activation of Pyk2 in response to GPCR-stimulation and that Pyk2 and Src are essential for GPCR-induced tyrosine phosphorylation of EGFR. By contrast, Pyk2, Src, and EGFR are dispensable for GPCR-induced activation of MAP kinase. Moreover, GPCR-induced MAP kinase activation is normal in fibroblasts deficient in both Src and Pyk2 (Src-/-Pyk2-/- cells) as well as in fibroblasts deficient in all three Src kinases expressed in these cells (Src-/-Yes-/-Fyn-/- cells). Finally, experiments are presented demonstrating that, upon stimulation of GPCR, activated Pyk2 forms a complex with Src, which in turn phosphorylates EGFR directly. These experiments reveal a role for Src kinases in Pyk2 activation and a role for Pyk2 and Src in tyrosine phosphorylation of EGFR following GPCR stimulation. In addition, EGFR, Src family kinases, and Pyk2 are not required for linking GPCRs with the MAP kinase signaling cascade.  相似文献   

10.
Although many of the signaling networks activated by receptor tyrosine kinases (RTKs) and cytokine receptors are well understood, how these networks interconnect is much less clear. We set out to determine how cells respond to simultaneous exposure to opposing signals and how their downstream networks process this information. Using six isogenic cell lines, each stably transfected with a different RTK, we found that, in each case, the cognate growth factor induced proliferation, whereas TNFα induced apoptosis. Surprisingly, when the cells were treated simultaneously with growth factor and TNFα, the growth factor enhanced, rather than antagonized, TNFα-induced cell death. In contrast, TNFα had no effect on growth factor-induced proliferation, suggesting that cross-talk between these networks is unidirectional. A quantitative, system-wide study of signaling at early and late time points corroborated this observation: proteins in the RTK networks were not affected by TNFα treatment, but proteins in the TNFα network were affected by growth factors. These studies also highlighted the stress mitogen-activated protein kinase proteins p38 and c-Jun N-terminal kinase as the key nodes of signal integration, and their activation states at an early time point correlated well with subsequent measurements of apoptosis. Knocking down cRaf reduced the growth factor enhancement of TNFα-induced apoptosis, highlighting its role as a regulator of network cross-talk upstream of p38 and c-Jun N-terminal kinase. Overall, we found that when cells encounter conflicting stimuli, their phenotypic response is determined not by the sum of isolated processes, but by how their signaling networks interconnect. This underscores the need to build mechanistic models of network integration as a first step in predicting cellular behavior in complex settings and in rationally designing combination therapies.  相似文献   

11.
Integrin signaling is a major pathway of cell adhesion to extracellular matrices that regulates many physiological cell behaviors such as cell proliferation, migration or differentiation and is implied in pathologies such as tumor invasion. In this paper, we focused on the molecular system formed by the two kinases FAK (focal adhesion kinase) and Src, which undergo auto- and co-activation during early steps of integrin signaling. The system is modelled using classical kinetic equations and yields a set of three nonlinear ordinary differential equations describing the dynamics of the different phosphorylation forms of FAK. Analytical and numerical analysis of these equations show that this system may in certain cases amplify incoming signals from the integrins. A quantitative condition is obtained, which indicates that the total FAK charge in the system acts as a critical mass that must be exceeded for amplification to be effective. Furthermore, we show that when FAK activity is lower than Src activity, spontaneous oscillations of FAK phosphorylation forms may appear. The oscillatory behavior is studied using bifurcation and stability diagrams. We finally discuss the significance of this behavior with respect to recent experimental results evidencing FAK dynamics.  相似文献   

12.

Background  

The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology.  相似文献   

13.
Despite the importance of epithelial cell contacts in determining cell behavior, we still lack a detailed understanding of the assembly and disassembly of intercellular contacts. Here we examined the role of the catalytic activity of the Src family kinases at epithelial cell contacts in vitro. Like E- and P-cadherin, Ca(2+) treatment of normal and tumor-derived human keratinocytes resulted in c-Yes (and c-Src and Fyn), as well as their putative substrate p120(CTN), being recruited to cell-cell contacts. A tyrosine kinase inhibitor with selectivity against the Src family kinases, PD162531, and a dominant-inhibitory c-Src protein that interferes with the catalytic function of the endogenous Src kinases induced cell-cell contact and E-cadherin redistribution, even in low Ca(2+), which does not normally support stable cell-cell adhesion. Time-lapse microscopy demonstrated that Src kinase inhibition induced stabilization of transiently formed intercellular contacts in low Ca(2+). Furthermore, a combination of E- and P-cadherin-specific antibodies suppressed cell-cell contact, indicating cadherin involvement. As a consequence of contact stabilization, normal cells were unable to dissociate from an epithelial sheet formed at high density and repair a wound in vitro, although individual cells were still motile. Thus, cadherin-dependent contacts can be stabilized both by high Ca(2+) and by inhibiting Src activity in low (0.03 mM) Ca(2+) in vitro.  相似文献   

14.
Protein tyrosine kinases are key enzymes of mammalian signal transduction. Substrate specificity is a fundamental property that determines the specificity and fidelity of signaling by protein tyrosine kinases. However, how protein tyrosine kinases recognize the protein substrates is not well understood. C-terminal Src kinase (Csk) specifically phosphorylates Src family kinases on a C-terminal Tyr residue, which down-regulates their activities. We have previously determined that Csk recognizes Src using a substrate-docking site away from the active site. In the current study, we identified the docking determinants in Src recognized by the Csk substrate-docking site and demonstrated an interaction between the docking determinants of Src and the Csk substrate-docking site for this recognition. A similar mechanism was confirmed for Csk recognition of another Src family kinase, Yes. Although both Csk and MAP kinases used docking sites for substrate recognition, their docking sites consisted of different substructures in the catalytic domain. These results helped establish a docking-based substrate recognition mechanism for Csk. This model may provide a framework for understanding substrate recognition and specificity of other protein tyrosine kinases.  相似文献   

15.
Cellular membranes, which can serve as scaffolds for signal transduction, dynamically change their characteristics upon cell detachment. Src family kinases undergo post-translational lipid modification and are involved in a wide range of signaling events at the plasma membrane, such as cell proliferation, cell adhesion, and survival. Previously, we showed the differential membrane distributions among the members of Src family kinases by sucrose density gradient fractionation. However, little is known about the regulation of the membrane distribution of Src family kinases upon cell detachment. Here, we show that cell detachment shifts the main peak of the membrane distribution of Lyn, a member of Src family kinase, from the low density to the high density membrane fractions and enhances the kinase activity of Lyn. The change in Lyn distribution upon cell detachment involves both dynamin activity and a decrease in membrane cholesterol. Cell detachment activates Lyn through decreased membrane cholesterol levels during a change in its membrane distribution. Furthermore, cholesterol incorporation decreases Lyn activity and reduces the viability of suspension cells. These results suggest that cell detachment-induced Lyn activation through the change in the membrane distribution of Lyn plays an important role in survival of suspension cells.  相似文献   

16.
Many receptors in hematopoietic cells use a common signaling pathway that relies on a highly conserved immunoreceptor tyrosine-based activation motif (ITAM), which signals through Src family tyrosine kinases. ITAM-bearing proteins are also found in many oncogenic viruses, including the mouse mammary tumor virus (MMTV) envelope (Env). We previously showed that MMTV Env expression transformed normal mammary epithelial cells and that Src kinases were important mediators in this transformation. To study how ITAM signaling affects mammary cell transformation, we utilized mammary cell lines expressing two different ITAM-containing proteins, one encoding a MMTV provirus and the other a B cell receptor fusion protein. ITAM-expressing cells were resistant to both serum starvation- and chemotherapeutic drug-induced apoptosis, whereas cells transduced with these molecules bearing ITAM mutations were indistinguishable from untransduced cells in their sensitivity to these treatments. We also found that Src kinase was activated in the MMTV-expressing cells and that MMTV-induced apoptosis resistance was completely restored by the Src inhibitor PP2. In vivo, MMTV infection delayed involution-induced apoptosis in the mouse mammary gland. Our results show that MMTV suppresses apoptosis through ITAM-mediated Src tyrosine kinase signaling. These studies could lead to the development of effective treatment of nonhematopoietic cell cancers in which ITAM-mediated signaling plays a role.  相似文献   

17.
Tyrosine kinases are known to play a critical role in the regulation of leukocyte function. Antithrombin mediates its effects via syndecan-4 which is known to be linked to the Src tyrosine kinases. In this study, we investigated the role of Src tyrosine kinases in antithrombin-regulated leukocyte migration and Src tyrosine kinase phosphorylation in response to stimulation with antithrombin. Neutrophils and monocytes obtained from forearm venous blood were pre-treated by various Src-family selective tyrosine kinase inhibitors with or without antithrombin followed by washing and assessment of their migratory response toward antithrombin, interleukin-8, or RANTES using Boyden microchemotaxis chambers. Activation status of the two major Src tyrosine kinase phosphorylation sides Tyr416 and Tyr527 was tested using Western blot analysis. Dose-dependent reversal of the antithrombin-mediated effects on neutrophil and monocyte migration was induced by the selective Src kinase inhibitors PP1 and PP2. In Western blot analyses, antithrombin increased Tyr416 and decreased Tyr527 phosphorylation of Src tyrosine kinases in a time- and dose-dependent manner. Moreover, co-incubation with antithrombin lowered the level of RANTES-induced Tyr416 phosphorylation. Therefore, Src tyrosine kinases linked to signaling of antithrombin-binding sites on leukocytes may play an important role in modulating effects on cells function.  相似文献   

18.
Endosomal trafficking is an essential cellular process involved in the transport of proteins such as integrins, hormone receptors, growth factor receptors, receptor tyrosine kinases, and lipids (e.g. sphingomyelin). Regulation of this process is highly complex and involves Arf GAPs, SNAREs, Rab proteins, Rho GTPases and the actin cytoskeleton. In this article, we focus on the intracellular targeting of the Src family of non-receptor tyrosine kinases (nRTKs), and the role of endosomes in the delivery of nRTKs to the plasma membrane. Furthermore, we discuss the role of the actin cytoskeleton in this process and consider how endosome-regulated intracellular trafficking affects cell signalling.  相似文献   

19.
Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton.  相似文献   

20.
Protein kinases are attractive therapeutic targets, but their high sequence and structural conservation complicates the development of specific inhibitors. We recently identified, in a DNA-templated macrocycle library, inhibitors with unusually high selectivity among Src-family kinases. Starting from these compounds, we developed and characterized in molecular detail potent macrocyclic inhibitors of Src kinase and its cancer-associated 'gatekeeper' mutant. We solved two cocrystal structures of macrocycles bound to Src kinase. These structures reveal the molecular basis of the combined ATP- and substrate peptide-competitive inhibitory mechanism and the remarkable kinase specificity of the compounds. The most potent compounds inhibit Src activity in cultured mammalian cells. Our work establishes that macrocycles can inhibit protein kinases through a bisubstrate-competitive mechanism with high potency and exceptional specificity, reveals the precise molecular basis for their desirable properties and provides new insights into the development of Src-specific inhibitors with potential therapeutic relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号