首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Duplicate genes are believed to be a major source of new gene functions over evolutionary time. In order to evaluate the evolutionary dynamics of rice duplicate genes, formed principally by paleoployploidization prior to the speciation of the Poaceae family, we have employed a public microarray dataset including 155 gene expression omnibus sample plates and bioinformatics tools. At least 57.4% of old ~70 million years ago (MYA) duplicate gene pairs exhibit divergences in expression over the given experimental set, whereas at least 50.9% of young ~7.7-MYA duplicate gene pairs were shown to be divergent. When grouping the rice duplicate genes according to functional categories, we noted a striking and significant enrichment of divergent duplicate metabolism-associated genes, as compared to that observed in non-divergent duplicate genes. While both non-synonymous substitution (Ka) and synonymous substitution (Ks) values between non- and divergent duplicate gene pairs evidenced significant differences, the Ka/Ks values between them exhibited no significant differences. Interestingly, the average numbers of conserved motifs of the duplicate gene pairs revealed a pattern of decline along with an increase in expression diversity, partially supporting the subfunctionalization model with degenerative complementation in regulatory motifs. Duplicate gene pairs with high local similarity (HLS) segments, which might be formed via conversion between rice paleologs, evidenced higher expression correlations than were observed in the gene pairs without the HLS segments; this probably resulted in an increased likelihood of gene conversion in promoters of the gene pairs harboring HLS segments. More than 60% of the rice gene families exhibited similar high expression diversity between members as compared to that of randomly selected gene pairs. These findings are likely reflective of the evolutionary dynamics of rice duplicate genes for gene retention. An erratum to this article can be found at  相似文献   

3.
Gene order and content differ among homologous regions of closely related genomes. Similarities in the expression profiles of physically adjacent genes suggest that the proper functioning of these genes depends on maintaining a specific position relative to each other. To better understand the results of the interaction of these two genomic forces, convergent, divergent, and tandem gene pairs in rice and sorghum, as well as their homologs in rice, sorghum, maize, and Brachypodium were analyzed. The status of each pair in all four species: whether it was conserved, inverted, rearranged, or missing homologs was determined. We observed that divergent gene pairs had lower rates of conservation than convergent or tandem pairs, but higher rates of rearranged pairs and missing homologs in maize than in any other species. We also discovered species-specific gene pairs in rice and sorghum. In rice, gene pairs with strongly correlated expression levels were conserved significantly more often than those with little or no correlation. We assigned three types of gene pair to one of 14 possible evolutionary history categories to uncover their evolutionary dynamics during the evolution of grass genomes.  相似文献   

4.
Krom N  Ramakrishna W 《Plant physiology》2008,147(4):1763-1773
Comparative analysis of the organization and expression patterns of divergent and convergent gene pairs in multiple plant genomes can identify patterns that are shared by more than one species or are unique to a particular species. Here, we study the coexpression and interspecies conservation of divergent and convergent gene pairs in three plant species: rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), and black cottonwood (Populus trichocarpa). Strongly correlated expression levels between divergent and convergent genes were found to be quite common in all three species, and the frequency of strong correlation appears to be independent of intergenic distance. Conservation of divergent or convergent arrangement among these species appears to be quite rare. However, conserved arrangement is significantly more frequent when the genes display strongly correlated expression levels or have one or more Gene Ontology (GO) classes in common. A correlation between intergenic distance in divergent and convergent gene pairs and shared GO classes was observed, in varying degrees, in rice and Populus but not in Arabidopsis. Furthermore, multiple GO classes were either overrepresented or underrepresented in Arabidopsis and Populus gene pairs, while only two GO classes were underrepresented in rice divergent gene pairs. Three cis-regulatory elements common to both Arabidopsis and rice were overrepresented in the intergenic regions of strongly correlated divergent gene pairs compared to those of noncorrelated pairs. Our results suggest that shared as well as unique mechanisms operate in shaping the organization and function of divergent and convergent gene pairs in different plant species.  相似文献   

5.
6.
A genome must locate its coding genes on the chromosomes in a meaningful manner with the help of natural selection, but the mechanism of gene order evolution is poorly understood. To explore the role of selection in shaping the current order of coding genes and their cis-regulatory elements, a comparative genomic approach was applied to the baker's yeast Saccharomyces cerevisiae and its close relatives. S. cerevisiae have experienced a whole-genome duplication followed by an extensive reorganization process of gene order, during which a number of new adjacent gene pairs appeared. We found that the proportion of new adjacent gene pairs in divergent orientation is significantly reduced, suggesting that such new divergent gene pairs may be disfavored most likely because their coregulation may be deleterious. It is also found that such new divergent gene pairs have particularly long intergenic regions. These observations suggest that selection specifically worked against deletions in intergenic regions of new divergent gene pairs, perhaps because they should be physically kept away so that they are not coregulated. It is indicated that gene regulation would be one of the major factors to determine the order of coding genes.  相似文献   

7.
A comprehensive analysis of duplication and gene conversion for 7394 Caenorhabditis elegans genes (about half the expected total for the genome) is presented. Of the genes examined, 40% are involved in duplicated gene pairs. Intrachromosomal or cis gene duplications occur approximately two times more often than expected. In general the closer the members of duplicated gene pairs are, the more likely it is that gene orientation is conserved. Gene conversion events are detectable between only 2% of the duplicated pairs. Even given the excesses of cis duplications, there is an excess of gene conversion events between cis duplicated pairs on every chromosome except the X chromosome. The relative rates of cis and trans gene conversion and the negative correlation between conversion frequency and DNA sequence divergence for unconverted regions of converted pairs are consistent with previous experimental studies in yeast. Three recent, regional duplications, each spanning three genes are described. All three have already undergone substantial deletions spanning hundreds of base pairs. The relative rates of duplication and deletion may contribute to the compactness of the C. elegans genome. Received: 30 July 1998 / Accepted: 12 October 1998  相似文献   

8.
Krom N  Ramakrishna W 《Genomics》2012,99(5):308-314
Small-scale changes in gene order and orientation are common in plant genomes, even across relatively short evolutionary distances. We investigated the association of retrotransposons in and near rice gene pairs with gene pair conservation, inversion, rearrangement, and deletion in sorghum, maize, and Brachypodium. Copia and Gypsy LTR-retrotransposon insertions were found to be primarily associated with reduced frequency of gene pair conservation and an increase in both gene pair rearrangement and gene deletions. SINEs are associated with gene pair rearrangement, while LINEs are associated with gene deletions. Despite being more frequently associated with retrotransposons than convergent and tandem pairs, divergent gene pairs showed the least effects from that association. In contrast, convergent pairs were least frequently associated with retrotransposons yet showed the greatest effects. Insertions between genes were associated with the greatest effects on gene pair arrangement, while insertions flanking gene pairs had significant effects only on divergent pairs.  相似文献   

9.
10.
11.
12.
13.

Background

In many eukaryotes, microRNAs (miRNAs) bind to complementary sites in the 3'-untranslated regions (3'-UTRs) of target messenger RNAs (mRNAs) and regulate their expression at the stage of translation. Recent studies have revealed that many miRNAs are evolutionarily conserved; however, the evolution of their target genes has yet to be systematically characterized. We sought to elucidate a set of conserved miRNA/target-gene pairs and to analyse the mechanism underlying miRNA-mediated gene regulation in the early stage of bilaterian evolution.

Results

Initially, we extracted five evolutionarily conserved miRNAs (let-7, miR-1, miR-124, miR-125/lin-4, and miR-34) among five diverse bilaterian animals. Subsequently, we designed a procedure to predict evolutionarily conserved miRNA/target-gene pairs by introducing orthologous gene information. As a result, we extracted 31 orthologous miRNA/target-gene pairs that were conserved among at least four diverse bilaterian animals; the prediction set showed prominent enrichment of orthologous miRNA/target-gene pairs that were verified experimentally. Approximately 84% of the target genes were regulated by three miRNAs (let-7, miR-1, and miR-124) and their function was classified mainly into the following categories: development, muscle formation, cell adhesion, and gene regulation. We used a reporter gene assay to experimentally verify the downregulation of six candidate pairs (out of six tested pairs) in HeLa cells.

Conclusions

The application of our new method enables the identification of 31 miRNA/target-gene pairs that were expected to have been regulated from the era of the common bilaterian ancestor. The downregulation of all six candidate pairs suggests that orthologous information contributed to the elucidation of the primordial set of genes that has been regulated by miRNAs; it was also an efficient tool for the elimination of false positives from the predicted candidates. In conclusion, our study identified potentially important miRNA-target pairs that were evolutionarily conserved throughout diverse bilaterian animals and that may provide new insights into early-stage miRNA functions.  相似文献   

14.
15.
Sequences and expression patterns of newly isolated human histone H2A and H2B genes and the respective proteins were compared with previously isolated human H2A and H2B genes and proteins. Altogether, 15 human H2A genes and 17 human H2B genes have been identified. 14 of these are organized as H2A/H2B gene pairs, while one H2A gene and three H2B genes are solitary genes. Two H2A genes and two H2B genes turned outto be pseudogenes. The 13 H2A genes code for at least 6 different amino acid sequences, and the 15 H2B genes encode 11 different H2B isoforms. Each H2A/H2B gene pair is controlled by a divergent promoter spanning 300 to 330 nucleotides between the coding regions of the two genes. The highly conserved divergent H2A/H2B promoters can be classified in two groups based on the patterns of consensus sequence elements. Group I promoters contain a TATA box for each gene, two Oct-1 factor binding sites, and three CCAAT boxes. Group II promoters contain the same elements as group I promoters and an additional CCAAT box, a binding motif for E2F and adjacent a highly conserved octanucleotide (CACAGCTT) that has not been described so far. Five of the 6 gene pairs and 4 solitary genes with group I promoters are localized in the large histone gene cluster at 6p21.3-6p22, and one gene pair is located at 1q21. All group II promoter associated genes are contained within the histone gene subcluster at D6S105, which is located at a distance of about 2 Mb from the major subcluster at 6p21.3-6p22 containing histone genes with group I promoters. Almost all group II H2A genes encode identical amino acid sequences, whereas group I H2A gene products vary at several positions. Using human cell lines, we have analyzed the expression patterns of functional human H2A/H2B gene pairs organized within the two histone gene clusters on the short arm of chromosome 6. The genes show varying expression patterns in different tumor cell lines.  相似文献   

16.
DNA methylation patterns are characterized by highly conserved developmental programs, but allow for divergent gene expression resulting from stochastic epigenetic drift or divergent environments. Genome-wide methylation studies in monozygotic (MZ) twins are providing insight into the extent of epigenetic variation that occurs, irrespective of genotype. However, little is known about the variability of DNA methylation patterns in adolescence, a period involving significant and rapid physical, emotional, social, and neurodevelopmental change. Here, we assessed genome-wide DNA methylation using the 450 K Illumina BeadChip in a sample of 37 MZ twin pairs followed longitudinally since birth to investigate: 1) the extent of variation in DNA methylation in identical genetic backgrounds in adolescence and; 2) whether these variations are randomly distributed or enriched in particular functional pathways. We also assessed stability of DNA methylation over 3–6 months to distinguish stable trait-like and variable state-like genes. A pathway analysis found high within-pair variability in genes associated with development, cellular mechanisms, tissue and cell morphology, and various disorders. Test-retest analyses performed in a sub-sample of 8 twin pairs demonstrated enrichment in gene pathways involved in organismal development, cellular growth and proliferation, cell signaling, and particular disorders. The variability found in functional gene pathways may plausibly underlie phenotypic differences in this adolescent MZ twin sample. Furthermore, we assessed stability of methylation over 3–6 months and found that some genes were stable while others were unstable, suggesting that the methylome remains dynamic in adolescence and that dynamic sites tend to be organized in certain gene pathways.  相似文献   

17.
The histidine tRNA genes of yeast   总被引:9,自引:0,他引:9  
Yeast has at least seven nuclear histidine tRNA genes although there is a single tRNAHis. We have sequenced three of the histidine tRNA genes. The genes have identical coding sequences and the DNA anti-codon sequence GTG corresponds to the GUG anti-codon in tRNAHis. None of the three yeast histidine tRNA genes has an intervening sequence. Two of the three genes contain repeated DNA elements in the region adjacent to the 5' end of the histidine tRNA gene. One of the elements, sigma, is 18 base pairs (bp) from the 5' end of each of these genes, sigma elements are highly conserved and flanked by 5-bp repeats. The other element, delta, is at variable distances from the tRNA gene; one is 439 bp from a histidine tRNA gene and the other is 52 bp from a histidine tRNA gene. These solo delta elements are quite divergent when compared with delta s associated with transposon yeast elements and are not flanked by 5-bp repeats.  相似文献   

18.

Background  

Despite of the fact that mammalian genomes are far more spacious than prokaryotic genomes, recent nucleotide sequencing data have revealed that many mammalian genes are arranged in a head-to-head orientation and separated by a small intergenic sequence. Extensive studies on some of these neighboring genes, in particular homologous gene pairs, have shown that these genes are often co-expressed in a symmetric manner and regulated by a shared promoter region. Here we report the identification of two non-homologous brain disease-related genes, with one coding for a serine protease inhibitor (SERPINI1) and the other for a programmed cell death-related gene (PDCD10), being tightly linked together by an asymmetric bidirectional promoter in an evolutionarily conserved fashion. This asymmetric bidirectional promoter, in cooperation with some cis-acting elements, is responsible for the co-regulation of the gene expression pattern as well as the tissue specificity of SERPINI1 and PDCD10.  相似文献   

19.
20.
《Epigenetics》2013,8(10):1410-1422
DNA methylation patterns are characterized by highly conserved developmental programs, but allow for divergent gene expression resulting from stochastic epigenetic drift or divergent environments. Genome-wide methylation studies in monozygotic (MZ) twins are providing insight into the extent of epigenetic variation that occurs, irrespective of genotype. However, little is known about the variability of DNA methylation patterns in adolescence, a period involving significant and rapid physical, emotional, social, and neurodevelopmental change. Here, we assessed genome-wide DNA methylation using the 450?K Illumina BeadChip in a sample of 37 MZ twin pairs followed longitudinally since birth to investigate: 1) the extent of variation in DNA methylation in identical genetic backgrounds in adolescence and; 2) whether these variations are randomly distributed or enriched in particular functional pathways. We also assessed stability of DNA methylation over 3–6 months to distinguish stable trait-like and variable state-like genes. A pathway analysis found high within-pair variability in genes associated with development, cellular mechanisms, tissue and cell morphology, and various disorders. Test-retest analyses performed in a sub-sample of 8 twin pairs demonstrated enrichment in gene pathways involved in organismal development, cellular growth and proliferation, cell signaling, and particular disorders. The variability found in functional gene pathways may plausibly underlie phenotypic differences in this adolescent MZ twin sample. Furthermore, we assessed stability of methylation over 3–6 months and found that some genes were stable while others were unstable, suggesting that the methylome remains dynamic in adolescence and that dynamic sites tend to be organized in certain gene pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号