首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A study was made of the synaptic actin ultrastructural localization in the hippocampal slices at long-lasting potentiation of area CA, using myosin subfragment-1 labeling. A specific qualitative ultrastructural sign of the potentiated hippocampal synapses was revealed for the first time - the formation in spines of rodlike bundles of actin filaments resembling the cilia. They penetrate the spine stalks to pass through the spine core towards the postsynaptic densities of active zones. The thinner bridges link the filament bundles with the actin cytoskeleton meshwork, with spine apparatus cisterns and with postsynaptic membranes of the active zones. Besides the increasing density of the presynaptic actin meshwork was shown. The changes in the actin cytoskeleton being taken into consideration, its contractile properties account for some morphofunctional features of the potentiated synapses known before and predict previously unknown ones.  相似文献   

2.
Synaptopodin (SYNPO) is a cytoskeletal protein that is preferentially located in mature dendritic spines, where it accumulates in the spine neck and closely associates with the spine apparatus. Formation of the spine apparatus critically depends on SYNPO. To further determine its molecular action, we screened for cellular binding partners. Using the yeast two-hybrid system and biochemical assays, SYNPO was found to associate with both F-actin and alpha-actinin. Ectopic expression of SYNPO in neuronal and non-neuronal cells induced actin aggregates, thus confirming a cytoplasmic interaction with the actin cytoskeleton. Whereas F-actin association is mediated by a central SYNPO motif, binding to alpha-actinin requires the C-terminal domain. Notably, the alpha-actinin binding domain is also essential for dendritic targeting and postsynaptic accumulation of SYNPO in primary neurons. Taken together, our data suggest that dendritic spine accumulation of SYNPO critically depends on its interaction with postsynaptic alpha-actinin and that SYNPO may regulate spine morphology, motility and function via its distinct modes of association with the actin cytoskeleton.  相似文献   

3.
Molecular mechanisms of dendritic spine morphogenesis   总被引:11,自引:0,他引:11  
Excitatory synapses are formed on dendritic spines, postsynaptic structures that change during development and in response to synaptic activity. Once mature, however, spines can remain stable for many months. The molecular mechanisms that control the formation and elimination, motility and stability, and size and shape of dendritic spines are being revealed. Multiple signaling pathways, particularly those involving Rho and Ras family small GTPases, converge on the actin cytoskeleton to regulate spine morphology and dynamics bidirectionally. Numerous cell surface receptors, scaffold proteins and actin binding proteins are concentrated in spines and engaged in spine morphogenesis.  相似文献   

4.
Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility.  相似文献   

5.
Dendritic spines are highly specialized actin-rich structures on which the majority of excitatory synapses are formed in the mammalian CNS. SPIN90 is an actin-binding protein known to be highly enriched in postsynaptic densities (PSDs), though little is known about its function there. Here, we show that SPIN90 is a novel binding partner for Shank proteins in the PSD. SPIN90 and Shank co-immunoprecipitate from brain lysates and co-localize in postsynaptic dendrites and act synergistically to mediate spine maturation and spine head enlargement. At the same time, SPIN90 causes accumulation of Shank and PSD-95 within dendritic spines. In addition, we found that the protein composition of PSDs in SPIN90 knockout mice is altered as is the actin cytoskeleton of cultured hippocampal SPIN90 knockout neurons. Taken together, these findings demonstrate that SPIN90 is a Shank1b binding partner and a key contributor to the regulation of dendritic spine morphogenesis and brain function.  相似文献   

6.
Rap small GTPases regulate excitatory synaptic strength and morphological plasticity of dendritic spines. Changes in spine structure are mediated by the F-actin cytoskeleton, but the link between Rap activity and actin dynamics is unclear. Here, we report a novel interaction between SPAR, a postsynaptic inhibitor of Rap, and α-actinin, a family of actin-cross-linking proteins. SPAR and α-actinin engage in bidirectional structural plasticity of dendritic spines: SPAR promotes spine head enlargement, whereas increased α-actinin2 expression favors dendritic spine elongation and thinning. Surprisingly, SPAR and α-actinin2 can function in an additive rather than antagonistic fashion at the same dendritic spine, generating combination spine/filopodia hybrids. These data identify a molecular pathway bridging the actin cytoskeleton and Rap at synapses, and suggest that formation of spines and filopodia are not necessarily opposing forms of structural plasticity.  相似文献   

7.
Dendritic spines are small protrusions along dendrites where the postsynaptic components of most excitatory synapses reside in the mature brain. Morphological changes in these actin-rich structures are associated with learning and memory formation. Despite the pivotal role of the actin cytoskeleton in spine morphogenesis, little is known about the mechanisms regulating actin filament polymerization and depolymerization in dendritic spines. We show that the filopodia-like precursors of dendritic spines elongate through actin polymerization at both the filopodia tip and root. The small GTPase Rif and its effector mDia2 formin play a central role in regulating actin dynamics during filopodia elongation. Actin filament nucleation through the Arp2/3 complex subsequently promotes spine head expansion, and ADF/cofilin-induced actin filament disassembly is required to maintain proper spine length and morphology. Finally, we show that perturbation of these key steps in actin dynamics results in altered synaptic transmission.  相似文献   

8.
Role of actin cytoskeleton in dendritic spine morphogenesis   总被引:1,自引:0,他引:1  
Dendritic spines are the postsynaptic receptive regions of most excitatory synapses, and their morphological plasticity play a pivotal role in higher brain functions, such as learning and memory. The dynamics of spine morphology is due to the actin cytoskeleton concentrated highly in spines. Filopodia, which are thin and headless protrusions, are thought to be precursors of dendritic spines. Drebrin, a spine-resident side-binding protein of filamentous actin (F-actin), is responsible for recruiting F-actin and PSD-95 into filopodia, and is suggested to govern spine morphogenesis. Interestingly, some recent studies on neurological disorders accompanied by cognitive deficits suggested that the loss of drebrin from dendritic spines is a common pathognomonic feature of synaptic dysfunction. In this review, to understand the importance of actin-binding proteins in spine morphogenesis, we first outline the well-established knowledge pertaining to the actin cytoskeleton in non-neuronal cells, such as the mechanism of regulation by small GTPases, the equilibrium between globular actin (G-actin) and F-actin, and the distinct roles of various actin-binding proteins. Then, we review the dynamic changes in the localization of drebrin during synaptogenesis and in response to glutamate receptor activation. Because side-binding proteins are located upstream of the regulatory pathway for actin organization via other actin-binding proteins, we discuss the significance of drebrin in the regulatory mechanism of spine morphology through the reorganization of the actin cytoskeleton. In addition, we discuss the possible involvement of an actin-myosin interaction in the morphological plasticity of spines.  相似文献   

9.
The subcellular distribution of soluble and filamentous forms of actin in Torpedo marmorata electrocyte was investigated by cytochemical methods. Under conditions of adequate fixation of the electric tissue, two different monoclonal anti-actin antibodies revealed, in situ, actin only in the cytoplasm, never in association with the innervated and non-innervated membranes. On the other hand, a fluorescent derivative of phalloidin labeled the polymerized F-form of actin at the level of the non-innervated membrane and of the nerve terminals. However, after homogenization of the tissue, innervated membrane fragments, which still comprised cytoskeletal filaments, were systematically labeled on their cytoplasmic face. In these membrane fragments, cytoplasmic actin was never observed on the cytoskeleton. These results point to a redistribution of actin during tissue fractionation. The secondary binding of actin to the cytoplasmic surface of the postsynaptic membrane is consistent with its known in vitro interaction with the membrane-bound, 43 kd (v1) protein. Thus, at variance with the 43 kd protein, actin is not a prominent component of the mature Torpedo postsynaptic domain, and its suggested contribution to the stabilization of the AchR in the postsynaptic membrane should be reconsidered.  相似文献   

10.
Neuronal plasticity is an important process for learning, memory and complex behaviour. Rapid remodelling of the actin cytoskeleton in the postsynaptic compartment is thought to have an important function for synaptic plasticity. However, the actin‐binding proteins involved and the molecular mechanisms that in vivo link actin dynamics to postsynaptic physiology are not well understood. Here, we show that the actin filament depolymerizing protein n‐cofilin is controlling dendritic spine morphology and postsynaptic parameters such as late long‐term potentiation and long‐term depression. Loss of n‐cofilin‐mediated synaptic actin dynamics in the forebrain specifically leads to impairment of all types of associative learning, whereas exploratory learning is not affected. We provide evidence for a novel function of n‐cofilin function in synaptic plasticity and in the control of extrasynaptic excitatory AMPA receptors diffusion. These results suggest a critical function of actin dynamics in associative learning and postsynaptic receptor availability.  相似文献   

11.
Oertner TG  Matus A 《Cell calcium》2005,37(5):477-482
Most excitatory synapses in the brain are made on spines, small protrusions from dendrites that exist in many different shapes and sizes. Spines are highly motile, a process that reflects rapid rearrangements of the actin cytoskeleton inside the spine, and can also change shape and size over longer timescales. These different forms of morphological plasticity are regulated in an activity-dependent way, involving calcium influx through glutamate receptors and voltage-gated calcium channels. Many proteins regulating the turnover of filamentous actin (F-actin) are calcium-dependent and might transduce intracellular calcium levels into spine shape changes. On the other hand, the morphology of a spine might affect the function of the synapse residing on it. In particular, the induction of synaptic plasticity is known to require large elevations in the postsynaptic calcium concentration, which depend on the ability of the spine to compartmentalize calcium. Since the actin cytoskeleton is also known to anchor postsynaptic glutamate receptors, changes in the actin polymerization state have the potential to influence synaptic function in a number of ways. Here we review the most prominent types of changes in spine morphology in hippocampal pyramidal cells with regard to their calcium-dependence and discuss their potential impact on synaptic function.  相似文献   

12.
Cytoskeletal organization at the postsynaptic complex   总被引:8,自引:2,他引:6       下载免费PDF全文
Postsynaptic densities and the adjacent cytoskeleton were examined in deep-etched, unfixed slices of guinea pig anteroventral cochlear nucleus. The postsynaptic density seen in conventional thin sections corresponds to a meshwork of 4-nm filaments associated with intramembrane particles at the postsynaptic active zone of inhibitory as well as excitatory synapses. These filaments intermesh with a lattice of 8- to 9-nm microfilaments, tentatively identified as F- actin, that is concentrated under the postsynaptic density. We postulate that the meshwork of 4-nm filaments anchors receptors to the adjacent microfilament lattice; this extended postsynaptic complex may limit the mobility of receptors and help maintain the curvature of the postsynaptic membrane.  相似文献   

13.
Insights into mechanisms coordinating membrane remodeling, local actin nucleation, and postsynaptic scaffolding during postsynapse formation are important for understanding vertebrate brain function. Gene knockout and RNAi in individual neurons reveal that the F-BAR protein syndapin I is a crucial postsynaptic coordinator in formation of excitatory synapses. Syndapin I deficiency caused significant reductions of synapse and dendritic spine densities. These syndapin I functions reflected direct, SH3 domain–mediated associations and functional interactions with ProSAP1/Shank2. They furthermore required F-BAR domain-mediated membrane binding. Ultra-high-resolution imaging of specifically membrane-associated, endogenous syndapin I at membranes of freeze-fractured neurons revealed that membrane-bound syndapin I preferentially occurred in spines and formed clusters at distinct postsynaptic membrane subareas. Postsynaptic syndapin I deficiency led to reduced frequencies of miniature excitatory postsynaptic currents, i.e., to defects in synaptic transmission phenocopying ProSAP1/Shank2 knockout, and impairments in proper synaptic ProSAP1/Shank2 distribution. Syndapin I–enriched membrane nanodomains thus seem to be important spatial cues and organizing platforms, shaping dendritic membrane areas into synaptic compartments.  相似文献   

14.
Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP   总被引:16,自引:0,他引:16  
Pak DT  Yang S  Rudolph-Correia S  Kim E  Sheng M 《Neuron》2001,31(2):289-303
The PSD-95/SAP90 family of scaffold proteins organizes the postsynaptic density (PSD) and regulates NMDA receptor signaling at excitatory synapses. We report that SPAR, a Rap-specific GTPase-activating protein (RapGAP), interacts with the guanylate kinase-like domain of PSD-95 and forms a complex with PSD-95 and NMDA receptors in brain. In heterologous cells, SPAR reorganizes the actin cytoskeleton and recruits PSD-95 to F-actin. In hippocampal neurons, SPAR localizes to dendritic spines and causes enlargement of spine heads, many of which adopt an irregular appearance with putative multiple synapses. Dominant negative SPAR constructs cause narrowing and elongation of spines. The effects of SPAR on spine morphology depend on the RapGAP and actin-interacting domains, implicating Rap signaling in the regulation of postsynaptic structure.  相似文献   

15.
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses and are major sites of information processing and storage in the brain. Changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton. Emerging evidence suggests that most signaling pathways linking synaptic activity to spine morphology influence local actin dynamics. Therefore, specific mechanisms of actin regulation are integral to the formation, maturation, and plasticity of dendritic spines and to learning and memory.  相似文献   

16.
We explored the relationship between regulation of the spine actin cytoskeleton, spine morphogenesis, and synapse formation by manipulating expression of the actin binding protein NrbI and its deletion mutants. In pyramidal neurons of cultured rat hippocampal slices, NrbI is concentrated in dendritic spines by binding to the actin cytoskeleton. Expression of one NrbI deletion mutant, containing the actin binding domain, dramatically increased the density and length of dendritic spines with synapses. This hyperspinogenesis was accompanied by enhanced actin polymerization and spine motility. Synaptic strengths were reduced to compensate for extra synapses, keeping total synaptic input per neuron constant. Our data support a model in which synapse formation is promoted by actin-powered motility.  相似文献   

17.
Summary The distribution of MAP2 and actin in dendritic spines of the visual and cerebellar cortices, dentate fascia, and hippocampus was determined by using immunogold electron microscopy. By this approach, we have confirmed the presence of MAP2 in dendritic spines and identified substructures within the spine compartment showing MAP2 immunoreactivity. MAP2 immunolabeling was mainly associated with filaments which reacted with a monoclonal anti-actin antibody. Also, by immunogold double-labeling we colocalized MAP2 with actin on the endomembranes of the spine apparatus, smooth endoplasmic reticulum, and in the postsynaptic density. Labeling was nearly absent in axons and axonal terminals. These results indicate that MAP2 is an actin-associated protein in dendritic spines. Thus, MAP2 may organize actin filaments in the spine and endow the actin network of the spine with dynamic properties that are necessary for synaptic plasticity.  相似文献   

18.
Dendritic spines are the major locations of excitatory synapses in the mammalian central nervous system. The transformation from dendritic filopodia to dendritic spines has been recognized as one type of spinogenesis. For instance, syndecan‐2 (SDC2), a synaptic heparan sulfate proteoglycan, is highly concentrated at dendritic spines and required for spinogenesis. It induces dendritic filopodia formation, followed by spine formation. However, the molecular regulation of the filopodium‐spine transition induced by SDC2 is still unclear. In this report, we show that calcium is an important signal downstream of SDC2 in regulation of filopodium‐spine transition but not filopodia formation. SDC2 interacted with the postsynaptic proteins calmodulin‐dependent serine kinase (CASK) and LIN7 and further recruited NMDAR to the tips of filopodia induced by SDC2. Calcium influx via NMDAR promoted spine maturation because addition of EGTA or AP5 to the culture medium effectively prevented morphological change from dendritic filopodia to dendritic spines. Our data also indicated that F‐actin rearrangement regulated by calcium influx is involved in the morphological change, because the knockdown of gelsolin, a calcium‐activated F‐actin severing molecule, impaired the filopodium‐spine transition induced by SDC2. In conclusion, our study demonstrates that postsynaptic proteins coordinate to trigger calcium signalling and cytoskeleton rearrangement and consequently control filopodium‐spine transition. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1011–1029, 2014  相似文献   

19.
20.
A new method was devised to visualize actin polymerization induced by postsynaptic differentiation signals in cultured muscle cells. This entails masking myofibrillar filamentous (F)-actin with jasplakinolide, a cell-permeant F-actin-binding toxin, before synaptogenic stimulation, and then probing new actin assembly with fluorescent phalloidin. With this procedure, actin polymerization associated with newly induced acetylcholine receptor (AChR) clustering by heparin-binding growth-associated molecule-coated beads and by agrin was observed. The beads induced local F-actin assembly that colocalized with AChR clusters at bead-muscle contacts, whereas both the actin cytoskeleton and AChR clusters induced by bath agrin application were diffuse. By expressing a green fluorescent protein-coupled version of cortactin, a protein that binds to active F-actin, the dynamic nature of the actin cytoskeleton associated with new AChR clusters was revealed. In fact, the motive force generated by actin polymerization propelled the entire bead-induced AChR cluster with its attached bead to move in the plane of the membrane. In addition, actin polymerization is also necessary for the formation of both bead and agrin-induced AChR clusters as well as phosphotyrosine accumulation, as shown by their blockage by latrunculin A, a toxin that sequesters globular (G)-actin and prevents F-actin assembly. These results show that actin polymerization induced by synaptogenic signals is necessary for the movement and formation of AChR clusters and implicate a role of F-actin as a postsynaptic scaffold for the assembly of structural and signaling molecules in neuromuscular junction formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号