首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrosoguanidine-induced Pseudomonas aeruginosa mutants which were unable to utilize glycerol as a carbon source were isolated. By utilizing PAO104, a mutant defective in glycerol transport and sn-glycerol-3-phosphate dehydrogenase (glpD), the glpD gene was cloned by a phage mini-D3112-based in vivo cloning method. The cloned gene was able to complement an Escherichia coli glpD mutant. Restriction analysis and recloning of DNA fragments located the glpD gene to a 1.6-kb EcoRI-SphI DNA fragment. In E. coli, a single 56,000-Da protein was expressed from the cloned DNA fragments. An in-frame glpD'-'lacZ translational fusion was isolated and used to determine the reading frame of glpD by sequencing across the fusion junction. The nucleotide sequence of a 1,792-bp fragment containing the glpD region was determined. The glpD gene encodes a protein containing 510 amino acids and with a predicted molecular weight of 56,150. Compared with the aerobic sn-glycerol-3-phosphate dehydrogenase from E. coli, P. aeruginosa GlpD is 56% identical and 69% similar. A similar comparison with GlpD from Bacillus subtilis reveals 21% identity and 40% similarity. A flavin-binding domain near the amino terminus which shared the consensus sequence reported for other bacterial flavoproteins was identified.  相似文献   

2.
The glpR gene encoding the repressor for the glp regulon of Escherichia coli was cloned from a library of HindIII DNA fragments established in bacteriophage lambda. Phages harboring glpR were isolated by selection for sn-glycerol-3-phosphate dehydrogenase function encoded by glpD, which is adjacent to glpR on the E. coli linkage map. Restriction endonuclease analysis and recloning of DNA fragments localized glpR to a 3-kilobase-pair EcoRI-SalI segment of DNA. Strains exhibiting constitutive expression of the glp operons were strongly repressed after introduction of multicopy plasmids containing the glpR gene. Analysis of proteins labeled in minicells harboring either glpR+ recombinant plasmids or a glpR::Tn5 derivative showed that the glpR gene product is a protein with an apparent molecular weight of 33,000.  相似文献   

3.
4.
The glpK gene, which codes for Escherichia coli K-12 glycerol kinase (EC 2.1.7.30, ATP:glycerol 3-phosphotransferase), has been cloned into the HindIII site of pBR322. The gene was contained in a 2.8-kilobase DNA fragment which was obtained from a lambda transducing bacteriophage, lambda dglpK100 (Conrad, C.A., Stearns, G.W., III, Prater, W.E., Rheiner, J.A., and Johnson, J.R. (1984) Mol. Gen. Genet. 195, 376-378). The DNA sequence of 2 kilobases of the cloned HindIII fragment was obtained using the dideoxynucleotide method. The start of the open reading frame for the glpK gene was identified from the N-terminal sequence of the first 22 amino acid residues of the purified enzyme, which was determined by automated Edman degradation. The open reading frame codes for a protein of 502 amino acids and a molecular weight of 56,106 which is in good agreement with the value previously determined by sedimentation equilibrium. The primary structure of the protein as deduced from the gene sequence was corroborated by the isolation and sequencing of four tryptic peptides, which were found to occur at the following amino acid locations: 173-177, 203-211, 279-281, 464-468. The N-terminal sequence of the purified enzyme shows that the enzyme undergoes post-translational processing. Restriction digestion as well as DNA sequencing of the supercoiled plasmid shows that the HindIII fragment is inserted into pBR322 such that the glpK gene is transcribed in a counterclockwise direction. Examination of the upstream DNA sequence reveals two possible promoters of essentially the same efficiency: the P1 promoter of pBR322 and a hybrid promoter which contains both bacterial and pBR322 DNA sequences.  相似文献   

5.
Abstract Using a genomic subtraction technique, we cloned a DNA sequence that is present in wild-type Escherichia coli strain CSH4 but is missing in a presumptive proline dehydrogenase deletion mutant RM2. Experimental evidence indicated that the cloned fragment codes for proline dehydrogenase (EC 1.5.99.8) since RM2 cells transformed with a plasmid containing this sequence was able to survive on minimal medium supplemented with proline as the sole nitrogen and carbon sources. The cloned DNA fragment has an open reading frame of 3942 bp and encodes a protein of 1313 amino acids with a calculated M r of 143 808. The deduced amino acid sequence of the E. colli proline dehydrogenase has an 84.9% homology to the previously reported Salmonella typhimurium putA gene but it is 111 amino acids longer at the C-terminal than the latter.  相似文献   

6.
A DNA fragment carrying the insecticidal protein gene of Bacillus thuringiensis subsp. aizawai IPL7 was cloned from a 78-kb plasmid. The nucleotide sequence revealed that the cloned DNA fragment contained a 3465-bp protein-coding region with 156-bp 5'-flanking, and 168-bp 3'-flanking regions. The open reading frame encoded a 130,690 Da protein consisting of 1155 amino acid residues. Nucleotide sequence comparison of the aizawai gene with the published berliner 1715 gene showed only 8 nt changes in the coding regions. It was found that 72 bp of the 5'-flanking sequence of the cloned aizawai gene was responsible for constitutive expression of the 130-kDa protein gene in Escherichia coli. The expression was greatly enhanced by introducing the tac promoter upstream from the 72-bp 5'-flanking region of the aizawai gene. Under optimal conditions, the 130-kDa insecticidal protein amounted to 38% of the total cellular protein.  相似文献   

7.
The gene encoding trimethylamine dehydrogenase (EC 1.5.99.7) from bacterium W3A1 has been cloned. Using the polymerase chain reaction a 530 bp DNA fragment encoding a distal part of the gene was amplified. Using this fragment of DNA as a probe, a clone was then isolated as a 4.5 kb BamHI fragment and shown to encode residues 34 to 729 of trimethylamine dehydrogenase. The polymerase chain reaction was used also to isolate the DNA encoding the missing N-terminal part of the gene. The complete open reading frame contained 2,190 base pairs coding for the processed protein of 729 amino acids which lacks the N-terminal methionine residue. The high-level expression of the gene in Escherichia coli was achieved by the construction of an expression vector derived from the plasmid pKK223-3. The cloning and sequence analysis described here complete the partial assignment of the amino acid sequence derived from chemical sequence [1] and will now permit the refinement of the crystallographic structure of trimethylamine dehydrogenase and also a detailed investigation of the mechanism and properties of the enzyme by protein engineering.  相似文献   

8.
9.
The nuclear gene encoding the Rieske iron-sulfur protein of the cytochrome bc1 complex of the mitochondrial respiratory chain has been isolated and characterized from Saccharomyces cerevisiae. We used a segment of the iron-sulfur protein gene from Neurospora crassa (Harnisch, U., Weiss, H., and Sebald, W. (1985) Eur. J. Biochem. 149, 95-99) to detect the yeast gene by Southern analysis. Five different but overlapping clones were then isolated by probing a yeast genomic library carried on YEp 13 by colony lift hybridization. Several approaches confirmed that the isolated DNA contained the gene for the Rieske iron-sulfur protein. The yeast gene, which contains no introns, can be expressed in Escherichia coli. A 900-base pair HindIII-EcoRI fragment was subcloned into pUC19 and directed the synthesis of immunodetectable protein. The gene was also identified by disruption of its chromosomal copy by homologous integration. A 400 base pair PstI-EcoRI fragment cloned adjacent to a HIS3 marker in pUC18 was used as an integrating vector. HIS+ transformants were obtained which were unable to grow on the nonfermentable carbon source glycerol. Southern analysis of the respiration deficient (gly-) strains confirmed that the chromosomal copy of the gene was disrupted, and immunoblots of extracts of the transformants indicated a lack of iron-sulfur protein. A respiration-deficient integrant was transformed to GLY+ by a 2-kilobase pair HindIII-BglII fragment, including a complete copy of the gene, carried on a multicopy episomal vector. Immunoblots with monoclonal antibodies to the iron-sulfur protein indicated overproduction of the protein in the complemented strain and revealed expression of approximately equal amounts of mature iron-sulfur protein and of a protein approximately 3 kDa larger than the mature protein in the complemented strain. A 1.2-kilobase pair segment of DNA from the clone which complemented the disrupted strains was sequenced and found to contain an open reading frame of 645 nucleotides, capable of encoding a 21,946-dalton protein. The gene is flanked by consensus signal sequences for initiation and termination which are common in yeast and is preceded by a possible upstream activating sequence. Amino acid sequence analysis of the amino-terminal end of the mature iron-sulfur protein agreed exactly with that predicted by the nucleotide sequence starting at Lys-31.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
香蕉花叶病毒外壳蛋白基因克隆及表达载体的构建   总被引:4,自引:0,他引:4  
从海南大田感染香蕉花叶病的香蕉叶片 ,获得香蕉花叶病毒 ,提纯其 RNA,在 AMV反转录酶作用下合成 c DNA第一链 ,经 PCR扩增 ,获得一约 70 0 bp的 DNA片段 ,测序结果显示所克隆的 DNA片段包含一完整的香蕉花叶病毒株系 ( CMV-BHI)外壳蛋白基因 ,长度为 6 5 7bp,然后将此 DNA片段 ,分别克隆到p BI1 2 1和 p KHG4质粒 ,构成两个含 Ca MV35 s启动子 ( 5 '-端 )、NOS终止子 ( 3'-端 )和分别含 NPT 标记基因和 NPT 及 HPT标记基因的植物表达载体 ( p TBB和 p TBK)。然后用 p AHC1 8中的 UBI promoter换下p BI1 2 1的 Ca MV35 s promoter,构成 p BIAH;再用 CMV-BHI外壳蛋白基因换下 p BIAH中 GUS基因 ,构成一含单子叶植物启动子 UBI和 NPT 标记基因的植物表达载体 ( p TBBU)。从而为 CMV-BHI外壳蛋白基因在香蕉中表达打下了基础  相似文献   

12.
The cheF gene, which is involved in chemotaxis in Bacillus subtilis, has been cloned, expressed, and sequenced. This gene is contained in a 0.7-kilobase PstI DNA fragment that was isolated from a lambda Charon 4A B. subtilis chromosomal DNA library. This fragment was subcloned into the expression vector pSI-1 and shown to complement the cheF mutation both for chemotaxis and for methanol production in response to the addition of attractants. Plasmid-encoded DNA expression in B. subtilis maxicells indicated that a membrane-associated polypeptide of 20-kilodaltons was expressed from this 0.7-kilobase DNA. The nucleotide sequence of this DNA fragment was determined, and an open reading frame capable of encoding a putative 175-amino-acid protein (Mr 20,002) was identified. In an effort to understand the function of the cheF protein, the dosage of the cheF gene product was varied by altering the concentration of IPTG (isopropyl-beta-D-thiogalactopyranoside) during growth. In the presence of high concentrations of IPTG, chemotaxis was inhibited and methanol production was impaired.  相似文献   

13.
The gene coding for the flavodoxin protein from Desulfovibrio vulgaris (Hildenborough) has been identified, cloned, and sequenced. DNA fragments containing the flavodoxin gene were identified by hybridization of a mixed synthetic heptadecanucleotide probe to Southern blots of SalI-digested genomic DNA. The nucleotide sequences of the probe were derived from the published protein primary structure (Dubourdieu, M., LeGall, J., and Fox, J. L. (1973) Biochem. Biophys. Res. Commun. 52, 1418-1425). The same oligonucleotide probe was used to screen libraries (in pUC19) containing size-selected SalI fragments. One recombinant, carrying a 1.6-kilobase (kb) insert which strongly hybridizes to the probe, was found to contain a nucleotide sequence which codes for the first 104 residues of the amino-terminal portion of the flavodoxin protein sequence but lacked the remainder of the gene. Therefore, a PstI restriction fragment from this clone was used as a probe to isolate the entire gene from a partial Sau3AI library in Charon 35. Of the plaques which continued to hybridize strongly to this probe through repeated screenings, one recombinant, containing a 16-kb insert, was further characterized. The entire flavodoxin gene was localized within a 1.4-kb XhoI-SacI fragment of this clone. The complete nucleotide sequence of the structural gene for the flavodoxin protein from Desulfovibrio vulgaris and flanking sequences which may include promoter and regulatory sequences are reported here. The cloned flavodoxin gene was placed behind the hybrid tac promoter for overexpression of the protein in Escherichia coli. Modification to the 5'-end of the gene, including substitutions at the second codon, were required to obtain high levels of expression. The expressed recombinant flavodoxin protein is isolated from E. coli cells as the holoprotein with physical and spectral properties similar to the protein isolated from D. vulgaris. To our knowledge, this is the first example of the expression of a foreign flavodoxin gene in E. coli using recombinant DNA methods.  相似文献   

14.
15.
A Tn501 mutant of Pseudomonas aeruginosa resistant to imipenem and lacking the imipenem-specific outer membrane porin protein OprD was isolated. The mutation could be complemented to imipenem susceptibility and OprD-sufficiency by a cloned 6-kb EcoRI-PstI fragment of DNA from the region of chromosome of the wild-type strain surrounding the site of Tn501 insertion. However, this fragment did not contain the oprD structural gene as judged by its inability to hybridize with an oligonucleotide corresponding to the N-terminal amino acid sequence of OprD. DNA sequencing of 3.9 kb of the region surrounding the Tn501 insertion site revealed three large open reading frames, one of which would be interrupted by the Tn501 insertion in the mutant. This latter open reading frame, named opdE (for putative regulator of oprD expression), predicted a hydrophobic protein of M(r) 41,592. Using the above-mentioned oligonucleotide, the oprD structural gene was cloned and expressed in Escherichia coli on a 2.1-kb Bam HI-KpnI fragment. DNA sequencing predicted a 420 amino acid mature OprD protein with a 23 amino acid signal sequence.  相似文献   

16.
Sequence of an osmotically inducible lipoprotein gene.   总被引:16,自引:8,他引:8       下载免费PDF全文
The osmB gene of Escherichia coli, whose expression is induced by elevated osmolarity, was cloned and physically mapped to a 0.65-kilobase-pair NsiI-HincII DNA fragment at 28 min on E. coli chromosome. The OsmB protein was identified in minicells expressing the cloned gene. The nucleotide sequence of a 652-base-pair chromosomal DNA fragment containing the osmB gene was determined. The open reading frame encodes a 72-residue polypeptide with an Mr of 6,949. This reading frame was confirmed by sequencing the fusion joint of an osmB::TnphoA gene fusion. The amino-terminal amino acid sequence of the open reading frame is consistent with reported signal sequences of exported proteins. The sequence around the putative signal sequence cleavage site, Leu-Ser-Ala-Cys-Ser-Asn, is highly homologous to the consensus sequence surrounding the processing site of bacterial lipoproteins. The presence of a lipid moiety on the protein was confirmed by demonstrating the incorporation of radioactive palmitic acid and inhibition of processing by globomycin. Preliminary localization of the authentic OsmB protein was determined in minicells harboring a plasmid that carries the NsiI-HincII fragment; it was primarily in the outer membrane. Surprisingly, an osmB mutant carrying the osmB::TnphoA insertion mutation was more resistant to the inhibition of metabolism by high osmolarity than the parent strain was.  相似文献   

17.
目的对拟态弧菌安徽分离株HX4(V.mimicusHX4株)的全长溶血素基因(vmh)进行克隆测序和生物信息学分析,为表达溶血素蛋白(VMH)奠定基础。方法采用PCR法扩增V.mimicusHX4菌株全长vmh基因,将其克隆至pMD18-Tvector并进行测序,应用生物信息学软件分析vmh基因的同源性及其编码蛋白的分子特征。结果V.mimicusHX4菌株vmh基因全长序列2235 bp,编码由744个氨基酸组成的分子量约为82.85 kDa的VMH蛋白。V.mimicusHX4菌株vmh基因的核苷酸序列和氨基酸序列与参考株相应序列的同源性分别介于98.9%~99.1%和96.6%~97.3%。VMH蛋白N端前25个氨基酸组成信号肽,7~27位氨基酸之间存在一个跨膜区域,蛋白二级结构中无规卷曲含量最高,达39.52%,其次为α-螺旋和β-折叠,分别占25.81%和26.75%,β转角含量最低,仅占7.93%。VMH蛋白含有多个T细胞和B细胞抗原表位,同时存在T、B细胞抗原表位的区域最有可能位于肽链第86~95、193~211、419~440和459~501位区段。结论拟态弧菌VMH蛋白是一种高度保守的毒素蛋白,对HX4菌株vmh基因及其编码蛋白信息特征的了解,有助于进一步表达VMH蛋白。  相似文献   

18.
Genomic DNA containing the protein coding region for Drosophila cAMP-dependent protein kinase catalytic subunit has been cloned and sequenced. The probe used to detect and isolate the gene fragment was constructed from two partially complementary synthetic oligonucleotides and contains 60 base pairs that encode (using Drosophila codon preferences) amino acids 195-214 of the beef heart catalytic subunit. In reduced stringency hybridization conditions, the probe recognizes two target sites in fly genomic DNA with 85% homology. One of these sites is in the cAMP-dependent protein kinase catalytic subunit gene, which was isolated as a 3959-base pair HindIII fragment. This fragment contains all of the protein coding portion, 900 base pairs upstream of the initiator ATG, and 2000 base pairs downstream of the termination codon (TAG). The coding portion of the gene contains no introns and yields a protein of 352 amino acids. There is a 2-amino acid insertion near the N terminus of the fly protein relative to the beef and mouse enzymes. Of the remaining 350 amino acids, 273 are invariant in the three species. A probe derived from the coding sequence of the HindIII clone hybridizes strongly to a 5100-base poly(A)+ RNA and weakly to 4100- and 3400-base poly(A)+ RNAs expressed in adult flies. A 2100-base pair EcoRI genomic fragment containing the second site recognized by the 60-base pair probe has also been cloned. DNA sequence analysis demonstrates that this fragment is part of the cGMP-dependent protein kinase gene or a close homolog. The catalytic subunit gene and the cGMP-dependent protein kinase gene have been located in regions 30C and 21D, respectively, of chromosome 2.  相似文献   

19.
Cloning of Bacillus subtilis DNA fragment with the lysA gene encoding diaminopimelatecarboxylase (EC 4.1.1.20) was done. The cloned gene in poorly expressed both in Escherichia coli and in Bacillus subtilis. Some DNA sequence distant from the lysA gene seems to be necessary for full gene expression, this sequence having been not cloned together with the lysA. The sequence in needed for regulation of the expression as well.  相似文献   

20.
Cloning and sequence of the crp gene of Escherichia coli K 12.   总被引:47,自引:12,他引:35       下载免费PDF全文
We have determined the nucleotide sequence of the crp gene of Escherichia coli K 12. From a lambda transducing phage, the crp region was subcloned into pBR322. The gene was localized on the cloned fragment by determining the length of deletions which affect its expression. Its nucleotide sequence was established by using the technique of Maxam and Gilbert. The deduced amino-acid sequence is in agreement with the previously published amino acid composition of the protein (1, 2). Analysis of the sequence confirms that the DNA binding domain is located in the C-terminal portion of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号