首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid accumulation of knowledge on apoptosis regulation in the 1990s was followed by the development of several experimental anticancer‐ and anti‐ischaemia (stroke or myocardial infarction) drugs. Activation of apoptotic pathways or the removal of cellular apoptotic inhibitors has been suggested to aid cancer therapy and the inhibition of apoptosis was thought to limit ischaemia‐induced damage. However, initial clinical studies on apoptosis‐modulating drugs led to unexpected results in different clinical conditions and this may have been due to co‐effects on non‐apoptotic interconnected cell death mechanisms and the ‘yin‐yang’ role of autophagy in survival versus cell death. In this review, we extend the analysis of cell death beyond apoptosis. Upon introduction of molecular pathways governing autophagy and necrosis (also called necroptosis or programmed necrosis), we focus on the interconnected character of cell death signals and on the shared cell death processes involving mitochondria (e.g. mitophagy and mitoptosis) and molecular signals playing prominent roles in multiple pathways (e.g. Bcl2‐family members and p53). We also briefly highlight stress‐induced cell senescence that plays a role not only in organismal ageing but also offers the development of novel anticancer strategies. Finally, we briefly illustrate the interconnected character of cell death forms in clinical settings while discussing irradiation‐induced mitotic catastrophe. The signalling pathways are discussed in their relation to cancer biology and treatment approaches.  相似文献   

2.
RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis   总被引:8,自引:0,他引:8  
Cancer cells are more susceptible to chemotherapeutic agent-induced apoptosis than their normal counterparts. Although it has been demonstrated that the increased sensitivity results from deregulation of oncoproteins during cancer development (Evan, G. I., and Vousden, K. H. (2001) Nature 411, 342-348; Green, D. R., and Evan, G. I. (2002) Cancer Cell 1, 19-30), little is known about the signaling pathways leading to changes in the apoptotic threshold in cancer cells. Here we show that low RKIP expression levels in tumorigenic human prostate and breast cancer cells are rapidly induced upon chemotherapeutic drug treatment, sensitizing the cells to apoptosis. We show that the maximal RKIP expression correlates perfectly with the onset of apoptosis. In cancer cells resistant to DNA-damaging agents, treatment with the drugs does not up-regulate RKIP expression. However, ectopic expression of RKIP resensitizes DNA-damaging agent-resistant cells to undergo apoptosis. This sensitization can be reversed by up-regulation of survival pathways. Down-regulation of endogenous RKIP by expression of antisense and small interfering RNA (siRNA) confers resistance on sensitive cancer cells to anticancer drug-induced apoptosis. Our studies suggest that RKIP may represent a novel effector of signal transduction pathways leading to apoptosis and a prognostic marker of the pathogenesis of human cancer cells and tumors after treatment with clinically relevant chemotherapeutic drugs.  相似文献   

3.
Apoptosis (programmed cell death) research has received much attention because of its wide-ranging implications in tissue kinetics. The ability of malignant cells to evade apoptosis is a hallmark of cancer, and their resistance to apoptosis constitutes an important clinical problem. Targeting proteins from the apoptotic signaling pathways for cancer therapy is currently an important research strategy, with some compounds entering clinical trials as novel therapeutic drugs in cancer medicine. These compounds may target the apoptosis machinery or may be inhibitors of growth factors that kill tumor cells via apoptosis. This review summarizes current observations in the literature related to recent research developments in apoptosis-mediated cancer therapy.  相似文献   

4.
Defective or inefficient apoptosis is an acquired hallmark of cancer cells. Thus, a thorough understanding of apoptotic signaling pathways and insights into apoptosis resistance mechanisms are imperative to unravel novel drug targets for the design of more effective and target selective therapeutic strategies. This review aims at providing an overview of the recent understanding of apoptotic signaling pathways, the main mechanisms by which cancer cells resist apoptotic insults, and discusses some recent attempts to target the mitochondrion for restoring efficient cell death signaling in cancer cells.  相似文献   

5.
Recently, it has been proposed that novel methodologies are needed to re-evaluate apoptotic cell death, as studies of apoptosis have shown it to be a complex process. Since mitochondria are key regulators in cell death pathways, we developed a simultaneous 3-parameter flow cytometric analysis that incorporates the change in mitochondrial membrane potential (Δψm) in an Annexin-V [for phosphatidyl-serine (PS)] and propidium iodide (PI) assay system (3 parameters with 4 colours), and evaluated the apoptotic process using various haematological malignant cell lines and death triggers. The present method enabled visualization of cell composition during apoptosis and captured complicated molecular events. For example, apoptotic cells that lost Δψm did not always externalize PS, while some late apoptotic cells had polarized Δψm. The findings of unchanged PS-externalization and aberrant cell death suggest that there is no relationship of PS externalization and apoptosis with an unknown apoptotic mechanism. Based on PS-externalization, sensitivity to staurosporine, and the combination of cell lines and triggers, the apoptotic process was classified into 2 types. Importantly, most of our findings could not be observed by PS–PI and Δψm assays when independently performed. Our method may be useful for examining mitochondrial-related apoptosis and death signalling pathways, as well as screening novel apoptosis-inducing cancer drugs.  相似文献   

6.
Apoptosis is a critical defense mechanism against the formation and progression of cancer and exhibits distinct morphological and biochemical traits. Targeting apoptotic pathways becomes an intriguing strategy for the development of chemotherapeutic agents. Peptides from marine organisms have become important sources in the discovery of antitumor drugs, especially when modern technology makes it more and more feasible to collect organisms from seas. This primer summarizes several marine peptides, based on their effects on apoptotic signaling pathways, although most of these peptides have not yet been studied in depth for their mechanisms of action. Novel peptides that induce an apoptosis signal pathway are presented in association with their pharmacological properties.  相似文献   

7.
Underneath the intricacy of every cancer lies mysterious events that impel the tumour cell and its posterity into abnormal growth and tissue invasion. Oncogenic mutations disturb the regulatory circuits responsible for the governance of versatile cellular functions, permitting tumour cells to endure deregulated proliferation, resist to proapoptotic insults, invade and erode normal tissues and above all escape apoptosis. This disruption of apoptosis has been highly implicated in various malignancies and has been exploited as an anticancer strategy. Owing to the fact that apoptosis causes minimal inflammation and damage to the tissue, apoptotic cell death-based therapy has been the centre of attraction for the development of anticancer drugs. Increased understanding of the molecular pathways underlying apoptosis has enabled scientists to establish unique approaches targeting apoptosis pathways in cancer therapeutics. In this review, we reconnoitre the two major pathways (intrinsic and extrinsic) targeted cancer therapeutics, steering toward chief modulators of these pathways, such as B-cell lymphoma 2 protein family members (pro- and antiapoptotic), inhibitor of apoptosis proteins, and the foremost thespian of extrinsic pathway regulator, tumour necrosis factor-related apoptosis-inducing agent. Together, we also will have a look from clinical perspective to address the agents (drugs) and therapeutic strategies adopted to target these specific proteins/pathways that have entered clinical trials.  相似文献   

8.
The review considers the current knowledge on molecular mechanisms of apoptosis. Particular emphasis is given to the key elements of the extrinsic death receptor pathway and the intrinsic mitochondrial pathway. Dysregulation of apoptotic pathways is considered as a key factor in the survival of cancer cells in response to conventional chemotherapeutic drugs or radiation therapy. Substances that selectively reactivate apoptosis in malignant cells are considered as the promising candidate anticancer drugs, which have now entered various phases of clinical trials. The modern techniques allowing non-invasive visualization of apoptotic cells with special reference to therapy-induced cell death are briefly surveyed.  相似文献   

9.
Apoptosis is a form of programmed cell death critical for development and homeostasis in multicellular organisms. Apoptosis-like cell death (ALCD) has been described in several fungi, including the opportunistic human pathogen Cryptococcus neoformans. In addition, capsular polysaccharides of C. neoformans are known to induce apoptosis in host immune cells, thereby contributing to its virulence. Our goals were to characterize the apoptotic signaling cascade in C. neoformans as well as its unique features compared to the host machinery to exploit the endogenous fungal apoptotic pathways as a novel antifungal strategy in the future. The dissection of apoptotic pathways revealed that apoptosis-inducing factor (Aif1) and metacaspases (Mca1 and Mca2) are independently required for ALCD in C. neoformans. We show that the apoptotic pathways are required for cell fusion and sporulation during mating, indicating that apoptosis may occur during sexual development. Previous studies showed that antifungal drugs induce ALCD in fungi and that C. neoformans adapts to high concentrations of the antifungal fluconazole (FLC) by acquisition of aneuploidy, especially duplication of chromosome 1 (Chr1). Disruption of aif1, but not the metacaspases, stimulates the emergence of aneuploid subpopulations with Chr1 disomy that are resistant to fluconazole (FLC(R)) in vitro and in vivo. FLC(R) isolates in the aif1 background are stable in the absence of the drug, while those in the wild-type background readily revert to FLC sensitivity. We propose that apoptosis orchestrated by Aif1 might eliminate aneuploid cells from the population and defects in this pathway contribute to the selection of aneuploid FLC(R) subpopulations during treatment. Aneuploid clinical isolates with disomies for chromosomes other than Chr1 exhibit reduced AIF1 expression, suggesting that inactivation of Aif1 might be a novel aneuploidy-tolerating mechanism in fungi that facilitates the selection of antifungal drug resistance.  相似文献   

10.
In order to alter the impact of diseases on human society, drug development has been one of the most invested research fields. Nowadays, cancer and infectious diseases are leading targets for the design of effective drugs, in which the primary mechanism of action relies on the modulation of programmed cell death (PCD). Due to the high degree of conservation of basic cellular processes between yeast and higher eukaryotes, and to the existence of an ancestral PCD machinery in yeast, yeasts are an attractive tool for the study of affected pathways that give insights into the mode of action of both antitumour and antifungal drugs. Therefore, we covered some of the leading reports on drug-induced apoptosis in yeast, revealing that in common with mammalian cells, antitumour drugs induce apoptosis through reactive oxygen species (ROS) generation and altered mitochondrial functions. The evidence presented suggests that yeasts may be a powerful model for the screening/development of PCD-directed drugs, overcoming the problem of cellular specificity in the design of antitumour drugs, but also enabling the design of efficient antifungal drugs, targeted to fungal-specific apoptotic regulators that do not have major consequences for human cells.  相似文献   

11.
12.
Preferential targeting of apoptosis in tumor versus normal cells   总被引:5,自引:0,他引:5  
Elimination of cancer cells by early apoptosis is preferred over other forms of cell growth inhibition. Apoptosis directly leads to tumor regression and reduces risks of selecting more aggressive and/or drug-resistant phenotypes that are often responsible for tumor regrowth and treatment failure. Although DNA damage by anticancer drugs is commonly recognized as an apoptotic stimulus, there is enormous variability in the magnitude and timing of such effects. Especially potent and rapid apoptosis seems to be a hallmark of various alkylating anticancer drugs that are regarded as DNA-reactive agents but are observed to react mainly with cellular proteins. Our studies with such dual-action drugs (irofulven, oxaliplatin) suggest that not only DNA damage, but also protein damage, contributes to apoptosis induction. DNA damage is well known to initiate death-signaling pathways leading to mitochondrial dysfunction. Protein damage, in turn, can distort cell redox homeostasis, which facilitates apoptosis execution. Such dual effects can be particularly lethal to tumor cells, which tend to function under pro-oxidative conditions. In contrast to tumor cells that are highly susceptible, normal cells show marginal apoptotic responses to the dual action drugs. This protection of normal cells might reflect their greater ability to buffer pro-oxidative changes and quickly restore redox homeostasis, despite substantial drug uptake and macromolecular binding. Importantly, by targeting the death process at multiple points, DNA- and protein-damaging drugs can be less vulnerable to various bypass mechanisms possible with single targets. The reviewed studies provide a proof of concept that differential apoptosis targeting in cancer versus normal cells can be a basis for tumor selectivity of anticancer drugs.  相似文献   

13.
Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.  相似文献   

14.
The development of biomarkers of cell death to reflect tumor biology and drug-induced response has garnered interest with the development of several classes of drugs aimed at decreasing the cellular threshold for apoptosis and exploiting pre-existing oncogenic stresses. These novel anticancer drugs, directly targeted to the apoptosis regulatory machinery and aimed at abrogating survival signaling pathways, are entering early clinical trials provoking the question of how to monitor their impact on cancer patients. The parallel development of drugs with predictive biomarkers and their incorporation into early clinical trials are anticipated to support the pharmacological audit trail, to speed the development and reduce the attrition rate of novel drugs whose objective is to provoke tumor cell death. Tumor biopsies are an ideal matrix to measure apoptosis, but surrogate less invasive biomarkers such as blood samples and functional imaging are less challenging to acquire clinically. Archetypal and exploratory examples illustrating the importance of biomarkers to drug development are given. This review explores the substantive challenges associated with the validation, deployment, interpretation and utility of biomarkers of cell death and reviews recent advances in their incorporation in preclinical and early clinical trial contexts.  相似文献   

15.
Retinoids as chemopreventive agents   总被引:2,自引:0,他引:2  
Retinoids are promising agents for cancer chemoprevention. The myriad effects of retinoids on biological processes including development, differentiation, homeostasis, carcinogenesis and apoptosis are mediated through their molecular targets, the retinoid and rexinoid receptors. Tissue specific expression patterns, ligand specificities, receptor numbers, their distinct functions and functional redundancy make retinoid signaling highly complex. The cross-talks of these receptors with cell surface receptors signaling pathways, as well as their interactions with multiple co-activators and co-repressors further add to the complexity of the pleiotropic effects of retinoids. Elucidation of retinoid signaling pathways and indepth understanding of the mechanisms that underlie the anti-proliferative and apoptotic action of retinoids has paved the way for designing synthetic retinoids for effective chemoprevention and therapy of cancer. Development of receptor selective synthetic retinoids is a major focus of molecular retinoid development. Other new avenues encompass identification of novel retinoid regulated genes, orphan-receptor ligands/functions, novel retinoid mechanisms involving receptor-independent apoptosis inducing activity and synergistic combinations with other agents for cancer prevention and therapy. This review focuses on recent advances in the understanding of molecular mechanisms underlying the action of retinoids and retinoid molecular targeting studies designed primarily to develop retinoids with reduced toxicity, while maintaining or enhancing activity in context of chemoprevention. The clinical efficacy of retinoid based chemoprevention trials is discussed.  相似文献   

16.
Woo M  Hakem R  Mak TW 《Cell research》2000,10(4):267-278
Apoptosis or programmed cell death(PCD) is an evolutionarily conserved cellular process that is essential for normal development and homeostasis of multicellular organisms.Defects in the apoptosis signaling result in many diseases including autoimmune diseases and cancer.The apoptosis signaling pathway was first described genetically in the nematode Caenorhabditis elegans which serves as a framework for the more complex apoptotic pathways that exist in mammals.In this review,we will discuss the apoptotic pathways that are emerging in mammals as elucidated by studies of gene-targeted mutant mice.  相似文献   

17.
Escape from apoptosis is a key attribute of tumour cells and facilitates chemo-resistance. The ‘BCL-2-regulated'' or ‘intrinsic'' apoptotic pathway integrates stress and survival signalling to govern whether a cancer cell will live or die. Indeed, many pro-apoptotic members of the BCL-2 family have demonstrated tumour-suppression activity in mouse models of cancer and are lost or repressed in certain human cancers. Conversely, overexpression of pro-survival BCL-2 family members promotes tumorigenesis in humans and in mouse models. Many of the drugs currently used in the clinic mediate their therapeutic effects (at least in part) through the activation of the BCL-2-regulated apoptotic pathway. However, initiators of this apoptotic pathway, such as p53, are mutated, lost or silenced in many human cancers rendering them refractory to treatment. To counter such resistance mechanisms, a novel class of therapeutics, ‘BH3-mimetics'', has been developed. These drugs directly activate apoptosis by binding and inhibiting select antiapoptotic BCL-2 family members and thereby bypass the requirement for upstream initiators, such as p53. In this review, we discuss the role of the BCL-2 protein family in the development and treatment of cancer, with an emphasis on mechanistic studies using well-established mouse models of cancer, before describing the development and already recognised potential of the BH3-mimetic compounds.  相似文献   

18.
A common feature of cancer cells is their ability to evade apoptosis as a result of alterations that block cell death signaling pathways. The extensive research efforts that elucidated these signaling pathways over the past decade have set the stage for the development of therapeutic agents that either kill cancer cells selectively or reset their apoptotic threshold. Over the past two years a number of these agents have been evaluated in preclinical and clinical trials. The results of these studies suggest that it might soon be possible to modulate apoptosis in cancer cells for therapeutic benefit.  相似文献   

19.
Major advances have been made in our understanding of the regulation of the molecular machinery of apoptosis in vitro. Molecules linking proliferation and apoptosis in healthy cells are being identified and here apoptotic cell death provides the 'fail-safe' mechanism to counteract excess proliferation. More recently, pioneering work on the regulation of apoptosis, in animal models of tumour development, has shown that suppression of apoptosis in the presence of a proliferative stimulus is sufficient for tumour development. Progress has also been made towards clarifying the contribution of drug-induced apoptosis to tumour response. With increasing evidence that failure to engage apoptosis after drug treatment contributes to drug resistance in vivo comes renewed confidence that new therapeutic approaches based on drug targets in apoptotic pathways will improve the treatment of cancer patients. As ever, tumour specificity is the major issue to be resolved.  相似文献   

20.
The assertion that a significant portion of the mammalian genome has not been translated and that non-coding RNA accounts for over half of polyadenylate RNA have received much attention. In recent years, increasing evidence proposes non-coding RNAs (ncRNAs) as new regulators of various cellular processes, including cancer progression and nerve damage. Apoptosis is a type of programmed cell death critical for homeostasis and tissue development. Cancer cells often have inhibited apoptotic pathways. It has recently been demonstrated that up/down-regulation of various lncRNAs in certain types of tumors shapes cancer cells' response to apoptotic stimuli. This review discusses the most recent studies on lncRNAs and apoptosis in healthy and cancer cells. In addition, the role of lncRNAs as novel targets for cancer therapy is reviewed here. Finally, since it has been shown that lncRNA expression is associated with specific types of cancer, the potential for using lncRNAs as biomarkers is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号