首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The time-resolved kinetics of the Ca(2+)-translocating partial reaction of the sarcoplasmatic reticulum Ca-ATPase was investigated by ATP-concentration jump experiments. ATP was released by an ultraviolet light flash from its inactive precursor and charge movements in the membrane domain of the ion pumps were detected by the fluorescent styryl dye 2BITC. Two oppositely directed cation movements were found, which were assigned to Ca(2+) release and H(+) binding. The faster process with a typical time constant of 30 ms reports the rate-limiting process before Ca(2+) release, probably the conformation transition E(1) --> E(2). The following, slow uptake of positive charge had a pH-dependent time constant, which was 1 s at low pH and approximately 3 s at pH > 8. This process is assigned to an electrically silent conformational relaxation of the state P-E(2) preceding H(+) binding. This interpretation is in agreement with the observation that the fast process was independent of the substrate concentrations (i.e., when [Ca(2+)] > 200 nM, and [ATP] > 20 micro M). The slow process was independent of the Ca(2+) concentration. The activation energy of the resolved processes was between 80 kJ/mol and 90 kJ/mol, which is comparable to the activation energy of the enzymatic activity (92 kJ/mol) and these high values point to conformational changes underlying rate-limiting steps of the pump cycle.  相似文献   

2.
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.  相似文献   

3.
In the presence of ascorbate/H(2)O(2), Fe(2+) ions or the ATP-Fe(2+) complex catalyze selective cleavage of the alpha subunit of gastric H(+),K(+)-ATPase. The electrophoretic mobilities of the fragments and dependence of the cleavage patterns on E(1) and E(2) conformational states are essentially identical to those described previously for renal Na(+),K(+)-ATPase. The cleavage pattern of H(+),K(+)-ATPase by Fe(2+) ions is consistent with the existence of two Fe(2+) sites: site 1 within highly conserved sequences in the P and A domains, and site 2 at the cytoplasmic entrance to trans-membrane segments M3 and M1. The change in the pattern of cleavage catalyzed by Fe(2+) or the ATP-Fe(2+) complex induced by different ligands provides evidence for large conformational movements of the N, P, and A cytoplasmic domains of the enzyme. The results are consistent with the Ca(2+)-ATPase crystal structure (Protein Data Bank identification code; Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Nature 405, 647-655), an E(1)Ca(2+) conformation, and a theoretical model of Ca(2+)-ATPase in an E(2) conformation (Protein Data Bank identification code ). Thus, it can be presumed that the movements of N, P, and A cytoplasmic domains, associated with the E(1) <--> E(2) transitions, are similar in all P-type ATPases. Fe(2+)-catalyzed cleavage patterns also reveal sequences involved in phosphate, Mg(2+), and ATP binding, which have not yet been shown in crystal structures, as well as changes which occur in E(1) <--> E(2) transitions, and subconformations induced by H(+),K(+)-ATPase-specific ligands such as SCH28080.  相似文献   

4.
Thermodynamic quantities for the binding of Mg2+ (in the presence of Ca2+) and Pi (in the presence of Mg2+ and absence of Ca2+) to sarcoplasmic reticulum ATPase were determined from isothermal titration calorimetry measurements at 25 degrees C. Mg2+ and Pi are involved in reversal of the ATPase hydrolytic reaction, and their interactions with the ATPase are conveniently studied under equilibrium conditions. We found that the Mg2+ binding reaction is endothermic with a binding constant (Kb) = 142 +/- 4 M(-1), a binding enthalpy of 180 +/- 3 kJ mol(-1), and an entropy contribution (TdeltaSb) = 192 +/- 3 kJ mol(-1). Similarly, Pi binding is also an endothermic reaction with Kb = 167 +/- 17 M(-1), deltaHb = 65.3 +/- 5.4 kJ mol(-1), and TdeltaSb = 77.9 +/- 5.4 kJ mol(-1). Our measurements demonstrate that the ATPase can absorb heat from the environment upon ligand binding, and emphasize the important role of entropic mechanisms in energy transduction by this enzyme.  相似文献   

5.
Ca2+-dependent regulation of the ion current through the alpha1Cbeta2aalpha2delta-1 (L-type) calcium channel transiently expressed in HEK 293 cells was investigated using whole cell patch clamp method. Ca2+ or Na+ ions were used as a charge carrier. Intracellular Ca2+ was either buffered by 10 mM EGTA or 200 microM Ca2+ was added into non-buffered intracellular solution. Free intracellular Ca2+ inactivated permanently about 80% of the L-type calcium current. The L-type calcium channel inactivated during a depolarizing pulse with two time constants, tau(fast) and tau(slow). Free intracellular calcium accelerated both time constants. Effect on the tau(slow) was more pronounced. About 80% of the channel inactivation during brief depolarizing pulse could be attributed to a Ca2+-dependent mechanism and 20% to a voltage-dependent mechanism. When Na+ ions were used as a charge carrier, the L-type current still inactivated with two time constants that were 10 times slower and were virtually voltage-independent. Ca2+ ions stabilized the inactivated state of the channel in a concentration-dependent manner.  相似文献   

6.
Identification of mixed di-cation forms of G-quadruplex in solution   总被引:1,自引:1,他引:0  
Multinuclear NMR study has demonstrated that G-quadruplex adopted by d(G3T4G4) exhibits two cation binding sites between three of its G-quartets. Titration of tighter binding K+ ions into the solution of d(G3T4G4)2 folded in the presence of 15NH4+ ions uncovered a mixed mono-K+-mono-15NH4+ form that represents intermediate in the conversion of di-15NH4+ into di-K+ form. Analogously, 15NH4+ ions were found to replace Na+ ions inside d(G3T4G4)2 quadruplex. The preference of 15NH4+ over Na+ ions for the two binding sites is considerably smaller than the preference of K+ over 15NH4+ ions. The two cation binding sites within the G-quadruplex core differ to such a degree that 15NH4+ ions bound to the site, which is closer to the edge-type loop, are always replaced first during titration by K+ ions. The second binding site is not taken up by K+ ion until K+ ion already resides at the first binding site. Quantitative analysis of concentrations of the three di-cation forms, which are in slow exchange on the NMR time scale, at 12 K+ ion concentrations afforded equilibrium binding constants. K+ ion binding to sites U and L within d(G3T4G4)2 is more favorable with respect to 15NH4+ ions by Gibbs free energies of approximately -24 and -18 kJ mol(-1) which includes differences in cation dehydration energies, respectively.  相似文献   

7.
BACKGROUND: Calmodulin is a ubiquitous Ca(2+)-activated regulator of cellular processes in eukaryotes. The structures of the Ca(2+)-free (apo) and Ca(2+)-loaded states of calmodulin have revealed that Ca(2+) binding is associated with a transition in each of the two domains from a closed to an open conformation that is central to target recognition. However, little is known about the dynamics of this conformational switch. RESULTS: The dynamics of the transition between closed and open conformations in the Ca(2+)-loaded state of the E140Q mutant of the calmodulin C-terminal domain were characterized under equilibrium conditions. The exchange time constants (tau(ex)) measured for 42 residues range from 13 to 46 micros, with a mean of 21 +/- 3 micros. The results suggest that tau(ex) varies significantly between different groups of residues and that residues with similar values exhibit spatial proximity in the structures of apo and/or Ca(2+)-saturated wild-type calmodulin. Using data for one of these groups, we obtained an open population of p(o) = 0.50 +/- 0.17 and a closed --> open rate constant of k(o) = x 10(4) s(-1). CONCLUSIONS: The conformational exchange dynamics appear to involve locally collective processes that depend on the structural topology. Comparisons with previous results indicate that similar processes occur in the wild-type protein. The measured rates match the estimated Ca(2+) off rate, suggesting that Ca(2+) release may be gated by the conformational dynamics. Structural interpretation of estimated chemical shifts suggests a mechanism for ion release.  相似文献   

8.
Iron deposition within the iron storage protein ferritin involves a complex series of events consisting of Fe(2+) binding, transport, and oxidation at ferroxidase sites and mineralization of a hydrous ferric oxide core, the storage form of iron. In the present study, we have examined the thermodynamic properties of Fe(2+) binding to recombinant human H-chain apoferritin (HuHF) by isothermal titration calorimetry (ITC) in order to determine the location of the primary ferrous ion binding sites on the protein and the principal pathways by which the Fe(2+) travels to the dinuclear ferroxidase center prior to its oxidation to Fe(3+). Calorimetric titrations show that the ferroxidase center is the principal locus for Fe(2+) binding with weaker binding sites elsewhere on the protein and that one site of the ferroxidase center, likely the His65 containing A-site, preferentially binds Fe(2+). That only one site of the ferroxidase center is occupied by Fe(2+) implies that Fe(2+) oxidation to form diFe(III) species might occur in a stepwise fashion. In dilute anaerobic protein solution (3-5 microM), only 12 Fe(2+)/protein bind at pH 6.51 increasing to 24 Fe(2+)/protein at pH 7.04 and 7.5. Mutation of ferroxidase center residues (E62K+H65G) eliminates the binding of Fe(2+) to the center, a result confirming the importance of one or both Glu62 and His65 residues in Fe(2+) binding. The total Fe(2+) binding capacity of the protein is reduced in the 3-fold hydrophilic channel variant S14 (D131I+E134F), indicating that the primary avenue by which Fe(2+) gains access to the interior of ferritin is through these eight channels. The binding stoichiometry of the channel variant is one-third that of the recombinant wild-type H-chain ferritin whereas the enthalpy and association constant for Fe(2+) binding are similar for the two with an average values (DeltaH degrees = 7.82 kJ/mol, binding constant K = 1.48 x 10(5) M(-)(1) at pH 7.04). Since channel mutations do not completely prevent Fe(2+) binding to the ferroxidase center, iron gains access to the center in approximately one-third of the channel variant molecules by other pathways.  相似文献   

9.
Calcineurin, a calmodulin-regulated phosphatase, is composed of two distinct subunits (A and B) and requires certain metal ions for activity. The binding of the two most potent activators, Ni2+ and Mn2+, to calcineurin and its subunits has been studied. Incubation of the protein with 63Ni2+ (or 54Mn2+) followed by gel filtration to separate free and protein-bound ions indicated that calcineurin could maximally bind 2 mol/mol of Ni2+ or Mn2+. While isolated A subunit also bound 2 mol/mol of Ni2+, no Mn2+ binding was demonstrated for either isolated A or B subunit. When bindings were monitored by nitrocellulose filter assay, only 1 mol/mol bound Ni2+ or Mn2+ was detected, suggesting that the two Ni2+ (or Mn2+) binding sites had different relative affinities and that only metal ions bound at the higher affinity sites were detected by the filter assay. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the filter assay-measured Ni2+ (or Mn2+) binding by only 30%. Preincubation of the protein with Zn2+ decreased the filter assay-measured Ni2+ or Mn2+ binding by 90 or 17%, respectively. The results suggest that the higher affinity sites are a Ni2+-specific site and a distinct Mn2+-specific site. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the gel filtration-determined Ni2+ (or Mn2+) binding from 2 to 1 mol/mol suggesting that calcineurin also contains a site which binds either metal ion. The time course of Ni2+ (or Mn2+) binding was correlated with that of the enzyme activation, and the extent of deactivation of the Ni2+-activated calcineurin by EDTA or by incubation with Ca2+ and calmodulin (Pallen, C. J., and Wang, J. H. (1984) J. Biol. Chem. 259, 6134-6141) was correlated with the release of the bound ions, thus suggesting that the bound ion is directly responsible for enzyme activation.  相似文献   

10.
Calcium binding to calmodulin and its globular domains   总被引:15,自引:0,他引:15  
The macroscopic Ca(2+)-binding constants of bovine calmodulin have been determined from titrations with Ca2+ in the presence of the chromophoric chelator 5,5'-Br2BAPTA in 0, 10, 25, 50, 100, and 150 mM KCl. Identical experiments have also been performed for tryptic fragments comprising the N-terminal and C-terminal domains of calmodulin. These measurements indicate that the separated globular domains retain the Ca2+ binding properties that they have in the intact molecule. The Ca2+ affinity is 6-fold higher for the C-terminal domain than for the N-terminal domain. The salt effect on the free energy of binding two Ca2+ ions is 20 and 21 kJ. mol-1 for the N- and C-terminal domain, respectively, comparing 0 and 150 mM KCl. Positive cooperativity of Ca2+ binding is observed within each globular domain at all ionic strengths. No interaction is observed between the globular domains. In the N-terminal domain, the cooperativity amounts to 3 kJ.mol-1 at low ionic strength and greater than or equal to 10 kJ.mol-1 at 0.15 M KCl. For the C-terminal domain, the corresponding figures are 9 +/- 2 kJ.mol-1 and greater than or equal to 10 kJ.mol-1. Two-dimensional 1H NMR studies of the fragments show that potassium binding does not alter the protein conformation.  相似文献   

11.
Point mutants with alterations to amino acid residues Thr(247), Pro(248), Glu(340), Asp(813), Arg(819), and Arg(822) of sarcoplasmic reticulum Ca(2+)-ATPase were analyzed by transient kinetic measurements. In the Ca(2+)-ATPase crystal structures, most of these residues participate in a hydrogen-bonding network between the phosphorylation domain (domain P), the third transmembrane helix (M3), and the cytoplasmic loop connecting the sixth and the seventh transmembrane helices (L6-7). In several of the mutants, a pronounced phosphorylation "overshoot" was observed upon reaction of the Ca(2+)-bound enzyme with ATP, because of accumulation of dephosphoenzyme at steady state. Mutations of Glu(340) and its partners, Thr(247) and Arg(822), in the bonding network markedly slowed the Ca(2+) binding transition (E2 --> E1 --> Ca(2)E1) as well as Ca(2+) dissociation from Ca(2+) site II back toward the cytosol but did not affect the apparent affinity for vanadate. These mutations may have caused a slowing, in both directions, of the conformational change associated directly with Ca(2+) interaction at Ca(2+) site II. Because mutation of Asp(813) inhibited the Ca(2+) binding transition, but not Ca(2+) dissociation, and increased the apparent affinity for vanadate, the effect on the Ca(2+) binding transition seems in this case to be exerted by slowing the E2 --> E1 conformational change. Because the rate was not significantly enhanced by a 10-fold increase of the Ca(2+) concentration, the slowing is not the consequence of reduced affinity of any pre-binding site for Ca(2+). Furthermore, the mutations interfered in specific ways with the phosphoenzyme processing steps of the transport cycle; the transition from ADP-sensitive phosphoenzyme to ADP-insensitive phosphoenzyme (Ca(2)E1P --> E2P) was accelerated by mutations perturbing the interactions mediated by Glu(340) and Asp(813) and inhibited by mutation of Pro(248), and mutations of Thr(247) induced charge-specific changes of the rate of dephosphorylation of E2P.  相似文献   

12.
M Milos  J J Schaer  M Comte  J A Cox 《Biochemistry》1986,25(20):6279-6287
Microcalorimetry, pH potentiometry, and direct binding studies by equilibrium dialysis or gel filtration were performed to determine the thermodynamic functions delta Ho, delta Go, and delta So guiding the interactions of Ca2+, Mg2+, and H+ with bovine brain calmodulin. At pH 7.5, Ca2+ and Mg2+ binding are both endothermic with enthalpy changes of 19.5 and 72.8 kJ X (mol of calmodulin)-1, respectively. These enthalpy changes are identical for each of the four ion-binding domains. The affinity constants also are identical with intrinsic values of 10(5) M-1 for Ca2+ and 140 M-1 for Mg2+. Ca2+ and Mg2+ do not compete for the same binding sites: at high concentrations of both ions, a calmodulin-Ca4-Mg4 species is formed with an enthalpy value of 24.4 kJ X mol-1 with respect to calmodulin-Ca4 and -28.8 kJ X mol-1 with respect to calmodulin-Mg4. Moreover, in the presence of high concentrations of Ca2+, the affinity of each of the four ion-binding domains in calmodulin for Mg2+ is decreased by a factor of 4 and vice versa, indicative of negative free-energy coupling between Ca2+ and Mg2+ binding. Protons antagonize Ca2+ and Mg2+ binding in a different manner. Ca2+-H+ antagonism is identical in each of the four Ca2+-binding domains in the pH range 7.5-5.2. Our analyses suggest that three chemical geometries, probably carboxyl-carboxylate interactions, are responsible for this antagonism with ionization constants of 10(6.2) M-1 in the metal-free protein. Mg2+-H+ antagonism also is identical for each of the Mg2+-binding sites but is qualitatively different from Ca2+-H+ antagonism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Hackl EV  Blagoi YP 《Biopolymers》2005,77(6):315-324
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.  相似文献   

14.
15.
ATP binds to sarcoplasmic reticulum Ca(2+)-ATPase both in a phosphorylating (catalytic) mode and in a nonphosphorylating (modulatory) mode, the latter leading to acceleration of phosphoenzyme turnover (Ca(2)E(1)P --> E(2)P and E(2)P --> E(2) reactions) and Ca(2+) binding (E(2) --> Ca(2)E(1)). In some of the Ca(2+)-ATPase crystal structures, Arg(678) and Glu(439) seem to be involved in the binding of nucleotide or an associated Mg(2+) ion. We have replaced Arg(678), Glu(439), and Gly(438) with alanine to examine their importance for the enzyme cycle and the modulatory effects of ATP and MgATP. The results point to the key role of Arg(678) in nucleotide binding and to the importance of interdomain bonds Glu(439)-Ser(186) and Arg(678)-Asp(203) in stabilizing the E(2)P and E(2) intermediates, respectively. Mutation of Arg(678) had conspicuous effects on ATP/MgATP binding to the E(1) form and ADP binding to Ca(2)E(1)P, as well as ATP/MgATP binding in modulatory modes to E(2)P and E(2), whereas the effects on ATP/MgATP acceleration of the Ca(2)E(1)P --> E(2)P transition were small, suggesting that the nucleotide that accelerates Ca(2)E(1)P --> E(2)P binds differently from that modulating the E(2)P --> E(2) and E(2) --> Ca(2)E(1) reactions. Mutation of Glu(439) hardly affected nucleotide binding to E(1), Ca(2)E(1)P, and E(2), but it led to disruption of the modulatory effect of ATP on E(2)P --> E(2) and acceleration of the latter reaction, indicating that ATP normally modulates E(2)P --> E(2) by interfering with the interaction between Glu(439) and Ser(186). Gly(438) seems to be important for this interaction as well as for nucleotide binding, probably because of its role in formation of the helix containing Glu(439) and Thr(441).  相似文献   

16.
S100B is a dimeric Ca(2+)-binding protein that undergoes a 90 +/- 3 degrees rotation of helix 3 in the typical EF-hand domain (EF2) upon the addition of calcium. The large reorientation of this helix is a prerequisite for the interaction between each subunit of S100B and target proteins such as the tumor suppressor protein, p53. In this study, Tb(3+) was used as a probe to examine how binding of a 22-residue peptide derived from the C-terminal regulatory domain of p53 affects the rate of Ca(2+) ion dissociation. In competition studies with Tb(3+), the dissociation rates of Ca(2+) (k(off)) from the EF2 domains of S100B in the absence and presence of the p53 peptide was determined to be 60 and 7 s(-)(1), respectively. These data are consistent with a previously reported result, which showed that that target peptide binding to S100B enhances its calcium-binding affinity [Rustandi et al. (1998) Biochemistry 37, 1951-1960]. The corresponding Ca(2+) association rate constants for S100B, k(on), for the EF2 domains in the absence and presence of the p53 peptide are 1.1 x 10(6) and 3.5 x 10(5) M(-)(1) s(-)(1), respectively. These two association rate constants are significantly below the diffusion control ( approximately 10(9) M(-)(1) s(-)(1)) and likely involve both Ca(2+) ion association and a Ca(2+)-dependent structural rearrangement, which is slightly different when the target peptide is present. EF-hand calcium-binding mutants of S100B were engineered at the -Z position (EF-hand 1, E31A; EF-hand 2, E72A; both EF-hands, E31A + E72A) and examined to further understand how specific residues contribute to calcium binding in S100B in the absence and presence of the p53 peptide.  相似文献   

17.
1. Ca(2+) ions decreased the surface charge of isolated adrenal-medullary chromaffin granules whether the granules were untreated or previously incubated with neuraminidase. 2. Ca(2+) binding in both cases followed a Langmuir adsorption isotherm. 3. The chromaffin-granule surface was essentially polyanionic with about 10800 anionic sites per granule, of which 4200 sites are capable of binding Ca(2+) ions with an electrochemical free energy of adsorption of -1.32kJ.mol(-1). 4. The surface region of the chromaffin granule was calculated to bind 1306 Ca(2+) ions at 2.2mm-Ca(2+) (ionic strength 0.16mol.litre(-1)). 5. The importance of Ca(2+) binding to the chromaffin-granule surface is discussed in relation to the hypothesis of secretion by exocytosis.  相似文献   

18.
Ca(2+)-activated Cl(-) channels play important roles in a variety of physiological processes, including epithelial secretion, maintenance of smooth muscle tone, and repolarization of the cardiac action potential. It remains unclear, however, exactly how these channels are controlled by Ca(2+) and voltage. Excised inside-out patches containing many Ca(2+)-activated Cl(-) channels from Xenopus oocytes were used to study channel regulation. The currents were mediated by a single type of Cl(-) channel that exhibited an anionic selectivity of I(-) > Br(-) > Cl(-) (3.6:1.9:1.0), irrespective of the direction of the current flow or [Ca(2+)]. However, depending on the amplitude of the Ca(2+) signal, this channel exhibited qualitatively different behaviors. At [Ca(2+)] < 1 microM, the currents activated slowly upon depolarization and deactivated upon hyperpolarization and the steady state current-voltage relationship was strongly outwardly rectifying. At higher [Ca(2+)], the currents did not rectify and were time independent. This difference in behavior at different [Ca(2+)] was explained by an apparent voltage-dependent Ca(2+) sensitivity of the channel. At +120 mV, the EC(50) for channel activation by Ca(2+) was approximately fourfold less than at -120 mV (0.9 vs. 4 microM). Thus, at [Ca(2+)] < 1 microM, inward current was smaller than outward current and the currents were time dependent as a consequence of voltage-dependent changes in Ca(2+) binding. The voltage-dependent Ca(2+) sensitivity was explained by a kinetic gating scheme in which channel activation was Ca(2+) dependent and channel closing was voltage sensitive. This scheme was supported by the observation that deactivation time constants of currents produced by rapid Ca(2+) concentration jumps were voltage sensitive, but that the activation time constants were Ca(2+) sensitive. The deactivation time constants increased linearly with the log of membrane potential. The qualitatively different behaviors of this channel in response to different Ca(2+) concentrations adds a new dimension to Ca(2+) signaling: the same channel can mediate either excitatory or inhibitory responses, depending on the amplitude of the cellular Ca(2+) signal.  相似文献   

19.
Fifteen independent 1-nsec MD simulations of fully solvated Ca(2+) saturated calmodulin (CaM) mutant D129N were performed from different initial conditions to provide a sufficient statistical basis to gauge the significance of observed dynamical properties. In all MD simulations the four Ca(2+) ions remained in their binding sites, and retained a single water ligand as observed in the crystal structure. The coordination of Ca(2+) ions in EF-hands I, II, and III was sevenfold. In EF-hand IV, which was perturbed by the mutation of a highly conserved Asp129, an anomalous eightfold Ca(2+) coordination was observed. The Ca(2+) binding loop in EF-hand II was observed to dynamically sample conformations related to the Ca(2+)-free form. Repeated MD simulations implicate two well-defined conformations of Ca(2+) binding loop II, whereas similar effect was not observed for loops I, III, and IV. In 8 out of 15 MD simulations Ca(2+) binding loop II adopted an alternative conformation in which the Thr62 >C=O group was displaced from the Ca(2+) coordination by a water molecule, resulting in the Ca(2+) ion ligated by two water molecules. The alternative conformation of the Ca(2+) binding loop II appears related to the "closed" state involved in conformational exchange previously detected by NMR in the N-terminal domain fragment of CaM and the C-terminal domain fragment of the mutant E140Q. MD simulations suggest that conformations involved in microsecond exchange exist partially preformed on the nanosecond time scale.  相似文献   

20.
Thermodynamics of binding of divalent metal ions including Ca(2+) , Mg(2+) , Ba(2+) , and Cd(2+) to Ca-free horseradish peroxidase (HRP) enzyme was investigated using UV/VIS spectrophotometry and molecular-mechanic (MM) calculations. According to the obtained binding and thermodynamic parameters, trend of the relative binding affinities of these divalent metal cations was found to be: Ca(2+) >Cd(2+) >Mg(2+) >Ba(2+) . Binding analysis based on Scatchard and Hill models showed positive cooperativity effect between the two distal and proximal binding sites. Furthermore, kinetics of binding and reconstitution process was examined (using relaxation-time method) for binding of Ca(2+) (as the typical metal ion) to Ca-free HRP, which was found a second-order type having a two-step mechanism involving fast formation of Ca-free HRP/1?Ca(2+) as the kinetic intermediate in step 1. Finally, by means of MM calculations, the comparative stability energies were evaluated for binding of M(2+) metal cations to Ca-free HRP. Based on MM calculations, preferential binding of Ca(2+) ion was occurred on distal and proximal binding sites of Ca-free HRP associated with higher stability energies (E(total) ). Indeed, among the divalent metal ions, Ca(2+) with the highest binding affinity (maximum value of K(bin) and minimum value of ΔG$\rm{{_{bin}^{0}}}$), maximum value of exothermic binding enthalpy, and stability energies stabilizes the HRP structure along with an optimized catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号