首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Protein N-terminal acetylation by Nα-acetyltransferases (NATs) is an omnipresent protein modification that affects a large number of proteins. The exact biological role of N-terminal acetylation has, however, remained enigmatic for the overall majority of affected proteins, and only for a rather small number of proteins, N-terminal acetylation was linked to various protein features including stability, localization, and interactions. This minireview tries to summarize the recent progress made in understanding the functionality of N-terminal protein acetylation and also focuses on noncanonical functions of the NATs subunits.  相似文献   

2.
3.
4.
Highlights? α-TAT mutants have short microtubules and variable protofilament number ? α-tubulin K40 acetylation promotes interprotofilament salt bridges ? α-tubulin K40 acetylation is a key constraint on protofilament number in vivo  相似文献   

5.
The aggregation of the protein α-synuclein (AS) is critical to the pathogenesis of Parkinson's disease. Although generally described as an unstructured monomer, recent evidence suggests that the native form of AS may be an α-helical tetramer which resists aggregation. Here, we show that N-terminal acetylation in combination with a mild purification protocol results in an oligomeric form of AS with partial α-helical structure. N-terminal acetylation of AS could have important implications for both the native and pathological structures and functions of AS. Through our demonstration of a recombinant expression system, our results represent an important step toward biochemical and biophysical characterization of this potentially important form of AS.  相似文献   

6.
7.
The use of immobilized lipase from Candida antarctica (Novozym(?) 435) to catalyze acetylation of trans-3,5,4'-trihydroxystilbene was investigated in this study. Response surface methodology and 5-level-4-factor central composite rotatable design were adopted to evaluate the effects of synthesis variables, including reaction time (24-72 h), temperature (25-65 °C), substrate molar ratio (1:15-1:75), and enzyme amount (600-3,000 PLU) on the percentage molar conversion of trans-4'-O-acetyl-3,5-dihydroxystilbene. The results showed that reaction temperature and enzyme amount were the most important parameters on percentage molar conversion. Based on ridge max analysis, the optimum conditions for synthesis were: reaction time 60 h, reaction temperature 64 °C, substrate molar ratio 1:56 and enzyme amount 2,293 PLU. The molar conversion of actual experimental values was 95% under optimal conditions. The synthesis product was analyzed using HPLC, mass and NMR. The results revealed that the major product was trans-4'-O-acetyl-3,5-dihydroxystilbene. The reaction kinetics was found to follow the Ping-Pong mechanism; substrate inhibition was not found at high vinyl acetate concentration.  相似文献   

8.
9.
10.
11.
12.
Recognition that different protein covalent modifications can operate in concert to regulate a single protein has forced us to re-think the relationship between amino acid side chain modifications and protein function. Results presented by Tran et al. 2012 demonstrate the association of a protein phosphatase (PP2A) with a histone/lysine deacetylase (HDA14) on plant microtubules along with a histone/lysine acetyltransferase (ELP3). This finding reveals a regulatory interface between two prevalent covalent protein modifications, protein phosphorylation and acetylation, emphasizing the integrated complexity of post-translational protein regulation found in nature.  相似文献   

13.
Functional modification of protein through N-terminal acetylation is common in eukaryotes but rare in prokaryotes. Prothymosin α is an essential protein in immune stimulation and apoptosis regulation. The protein is N-terminal acetylated in eukaryotes, but similar modification has never been found in recombinant protein produced in prokaryotes. In this study, two mass components of recombinant human prothymosin α expressed in Escherichia coli were identified and separated by RP-HPLC. Mass spectrometry of the two components showed that one of them had a 42 Da mass increment as compared with the theoretical mass of human prothymosin α, which suggested a modification of acetylation. The mass of another one was equal to that of the theoretical one. Peptides mass spectrometry of the modified component showed that the 42-Da mass increment occurred in the N-terminal peptide domain, and MS/MS peptide sequencing of the N-terminal peptide found that the acetylated modification occurred at the N-terminal serine residue. So, part of the recombinant human prothymosin α produced by E. coli was N-terminal acetylated. This finding adds a new clue for the mechanism of acetylated modification in prokaryotes, and also suggested a new method for production of N-terminal modificated prothymosin α and thymosin α1.  相似文献   

14.
Microtubules are highly dynamic polymers of α/β tubulin heterodimers that play key roles in cell division and in organizing cell cytoplasm. Although they have been discovered more than two decades ago, tubulin post-translational modifications recently gained a new interest as their role was increasingly highlighted in neuron differentiation and neurodegenerative disorders. Here, we specifically focus on tubulin acetylation from its discovery to recent studies that provide new insights into how it is regulated in health and disease and how it impacts microtubule functions. Even though new mechanisms involving tubulin acetylation are regularly being uncovered, the molecular links between its location inside the microtubule lumen and its regulators and effectors is still poorly understood. This review highlights the emerging roles of tubulin acetylation in multiple cellular functions, ranging from cell motility, cell cycle progression or cell differentiation to intracellular trafficking and signalling. It also points out that tubulin acetylation should no longer be seen as a passive marker of microtubule stability, but as a broad regulator of microtubule functions.  相似文献   

15.
Maltsev AS  Ying J  Bax A 《Biochemistry》2012,51(25):5004-5013
N-Terminal acetylation of α-synuclein (aS), a protein implicated in the etiology of Parkinson's disease, is common in mammals. The impact of this modification on the protein's structure and dynamics in free solution and on its membrane binding properties has been evaluated by high-resolution nuclear magnetic resonance and circular dichroism (CD) spectroscopy. While no tetrameric form of acetylated aS could be isolated, N-terminal acetylation resulted in chemical shift perturbations of the first 12 residues of the protein that progressively decreased with the distance from the N-terminus. The directions of the chemical shift changes and small changes in backbone (3)J(HH) couplings are consistent with an increase in the α-helicity of the first six residues of aS, although a high degree of dynamic conformational disorder remains and the helical structure is sampled <20% of the time. Chemical shift and (3)J(HH) data for the intact protein are virtually indistinguishable from those recorded for the corresponding N-terminally acetylated and nonacetylated 15-residue synthetic peptides. An increase in α-helicity at the N-terminus of aS is supported by CD data on the acetylated peptide and by weak medium-range nuclear Overhauser effect contacts indicative of α-helical character. The remainder of the protein has chemical shift values that are very close to random coil values and indistinguishable between the two forms of the protein. No significant differences in the fibrillation kinetics were observed between acetylated and nonacetylated aS. However, the lipid binding properties of aS are strongly impacted by acetylation and exhibit distinct behavior for the first 12 residues, indicative of an initiation role for the N-terminal residues in an "initiation-elongation" process of binding to the membrane.  相似文献   

16.
Dynamic instability is a critical property of microtubules (MTs). By regulating the rate of tubulin polymerization and depolymerization, cells organize the MT cytoskeleton to accommodate their specific functions. Among many processes, posttranslational modifications of tubulin are implicated in regulating MT functions. Here we report a novel tubulin acetylation catalyzed by acetyltransferase San at lysine 252 (K252) of β-tubulin. This acetylation, which is also detected in vivo, is added to soluble tubulin heterodimers but not tubulins in MTs. The acetylation-mimicking K252A/Q mutants were incorporated into the MT cytoskeleton in HeLa cells without causing any obvious MT defect. However, after cold-induced catastrophe, MT regrowth is accelerated in San-siRNA cells while the incorporation of acetylation-mimicking mutant tubulins is severely impeded. K252 of β-tubulin localizes at the interface of α-/β-tubulins and interacts with the phosphate group of the α-tubulin-bound GTP. We propose that the acetylation slows down tubulin incorporation into MTs by neutralizing the positive charge on K252 and allowing tubulin heterodimers to adopt a conformation that disfavors tubulin incorporation.  相似文献   

17.
18.
In the past decade, research into cardiovascular diseases, such as atherosclerosis and restenosis, has been focused on the identification of genetic factors that determine disease risk besides clinical risk factors. Many genes in lipid metabolism, vascular homeostasis, haemostasis and inflammation have been found to be related to coronary artery disease1 and the multifactorial nature of the disease suggests a role for many other, yet uninvestigated genes. Previous research from our department has demonstrated the importance of genetics in restenosis after a percutaneous coronary intervention (PCI). Polymorphisms in several inflammatory genes, such as TNFα, eotaxin, CD14, GM-CSF, IL-10, caspase-1, but also noninflammatory genes, such as LPL, stromelysin-1 and the β adrenergic receptor have been found to be associated with the risk of restenosis.2-5 It has become clear, however, that part of the gene-environmental interactions relevant for complex diseases is regulated by epigenetic mechanisms such as histone acetylation and DNA methylation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号