首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an NADP(+)-dependent oxidoreductase and a structural and functional homolog of aldehyde dehydrogenases. Here we report the crystal structures of several C(t)-FDH mutants in which two essential catalytic residues adjacent to the nicotinamide ring of bound NADP(+), Cys-707 and Glu-673, were replaced separately or simultaneously. The replacement of the glutamate with an alanine causes irreversible binding of the coenzyme without any noticeable conformational changes in the vicinity of the nicotinamide ring. Additional replacement of cysteine 707 with an alanine (E673A/C707A double mutant) did not affect this irreversible binding indicating that the lack of the glutamate is solely responsible for the enhanced interaction between the enzyme and the coenzyme. The substitution of the cysteine with an alanine did not affect binding of NADP(+) but resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme: unlike the wild-type C(t)-FDH/NADPH complex, in the C707A mutant the position of NADPH is identical to the position of NADP(+) with the nicotinamide ring well ordered within the catalytic center. Thus, whereas the glutamate restricts the affinity for the coenzyme, the cysteine is the sensor of the coenzyme redox state. These conclusions were confirmed by coenzyme binding experiments. Our study further suggests that the binding of the coenzyme is additionally controlled by a long-range communication between the catalytic center and the coenzyme-binding domain and points toward an α-helix involved in the adenine moiety binding as a participant of this communication.  相似文献   

2.
A three-dimensional structure is engineered for the Trypanosoma congolense trypanothione reductase (TpR) using the sequence homology with glutathione reductase (GR) and lipoamide dehydrogenase, molecular graphics, energy optimization and molecular dynamics techniques. The model was extended to include the complex with the coenzyme nicotinamide adenine dinucleotide phosphate (NADP). The TpR-NADP structure is compared with X-ray data from the glutathione reductase complex with the reduced NADP (NADPH). A model of TpR-NADP including the trypanothione substrate is presented, and an electron-transfer mechanism is proposed.  相似文献   

3.
The ferredoxin nicotinamide adenine dinucleotide phosphate reductase from Pseudomonas aeruginosa ( pa-FPR) in complex with NADP (+) has been characterized by X-ray crystallography and in solution by NMR spectroscopy. The structure of the complex revealed that pa-FPR harbors a preformed NADP (+) binding pocket where the cofactor binds with minimal structural perturbation of the enzyme. These findings were complemented by obtaining sequential backbone resonance assignments of this 29518 kDa enzyme, which enabled the study of the pa-FPR-NADP complex by monitoring chemical shift perturbations induced by addition of NADP (+) or the inhibitor adenine dinucleotide phosphate (ADP) to pa-FPR. The results are consistent with a preformed NADP (+) binding site and also demonstrate that the pa-FPR-NADP complex is largely stabilized by interactions between the protein and the 2'-P AMP portion of the cofactor. Analysis of the crystal structure also shows a vast network of interactions between the two cofactors, FAD and NADP (+), and the characteristic AFVEK (258) C'-terminal extension that is typical of bacterial FPRs but is absent in their plastidic ferredoxin NADP (+) reductase (FNR) counterparts. The conformations of NADP (+) and FAD in pa-FPR place their respective nicotinamide and isoalloxazine rings 15 A apart and separated by residues in the C'-terminal extension. The network of interactions among NADP (+), FAD, and residues in the C'-terminal extension indicate that the gross conformational rearrangement that would be necessary to place the nicotinamide and isoalloxazine rings parallel and adjacent to one another for direct hydride transfer between NADPH and FAD in pa-FPR is highly unlikely. This conclusion is supported by observations made in the NMR spectra of pa-FPR and the pa-FPR-NADP complex, which strongly suggest that residues in the C'-terminal sequence do not undergo conformational exchange in the presence or absence of NADP (+). These findings are discussed in the context of a possible stepwise electron-proton-electron transfer of hydride in the oxidation of NADPH by FPR enzymes.  相似文献   

4.
Influences on coenzyme preference are explored. Lysine 137 (192 in class 1/2 ALDH) lies close to the adenine ribose, directly interacting with the adenine ribose in NAD-specific ALDHs and the 2'-phosphate of NADP in NADP-specific ALDHs. Lys-137 in class 3 ALDH interacts with the adenine ribose indirectly through an intervening water molecule. However, this residue is present in all ALDHs and, as a result, is unlikely to directly influence coenzyme specificity. Glutamate 140 (195) coordinates the 2'- and 3'-hydroxyls of the adenine ribose of NAD in the class 3 tertiary structure. Thus, it appeared that this residue would influence coenzyme specificity. Mutation to aspartate, asparagine, glutamine or threonine shifts the coenzyme specificity towards NADP, but did not completely change the specificity. Still, the mutants show the 2'-phosphate of NADP is repelled by Glu-140 (195). Although Glu-140 (195) has a major influence on coenzyme specificity, it is not the only influence since class 3 ALDHs, can use both coenzymes, and class 2 ALDHs, which are NAD-specific, have a glutamate at this position. One explanation may be that the larger space between Lys-137 (192) and the adenine ribose hydroxyls in the class 3 ALDH:NAD binary structure may provide space to accommodate the 2'-phosphate of NADP. Also, a structural shift upon binding NADP may also occur in class 3 ALDHs to help accommodate the 2'-phosphate of NADP.  相似文献   

5.
The flavoenzyme ferredoxin-NADP+ reductase (FNR) catalyses the production of NADPH in photosynthesis. The three-dimensional structure of FNR presents two distinct domains, one for binding of the FAD prosthetic group and the other for NADP+ binding. In spite of extensive experiments and different crystallographic approaches, many aspects about how the NADP+ substrate binds to FNR and how the hydride ion is transferred from FAD to NADP+ remain unclear. The structure of an FNR:NADP+ complex from Anabaena has been determined by X-ray diffraction analysis of the cocrystallised units to 2.1 A resolution. Structural perturbation of FNR induced by complex formation produces a narrower cavity in which the 2'-phospho-AMP and pyrophosphate portions of the NADP+ are perfectly bound. In addition, the nicotinamide mononucleotide moiety is placed in a new pocket created near the FAD cofactor with the ribose being in a tight conformation. The crystal structure of this FNR:NADP+ complex obtained by cocrystallisation displays NADP+ in an unusual conformation and can be considered as an intermediate state in the process of coenzyme recognition and binding. Structural analysis and comparison with previously reported complexes allow us to postulate a mechanism which would permit efficient hydride transfer to occur. Besides, this structure gives new insights into the postulated formation of the ferredoxin:FNR:NADP+ ternary complex by prediction of new intermolecular interactions, which could only exist after FNR:NADP+ complex formation. Finally, structural comparison with the members of the broad FNR structural family also provides an explanation for the high specificity exhibited by FNR for NADP+/H versus NAD+/H.  相似文献   

6.
Influences on coenzyme preference are explored. Lysine 137 (192 in class 1/2 ALDH) lies close to the adenine ribose, directly interacting with the adenine ribose in NAD-specific ALDHs and the 2′-phosphate of NADP in NADP-specific ALDHs. Lys-137 in class 3 ALDH interacts with the adenine ribose indirectly through an intervening water molecule. However, this residue is present in all ALDHs and, as a result, is unlikely to directly influence coenzyme specificity. Glutamate 140 (195) coordinates the 2′- and 3′-hydroxyls of the adenine ribose of NAD in the class 3 tertiary structure. Thus, it appeared that this residue would influence coenzyme specificity. Mutation to aspartate, asparagine, glutamine or threonine shifts the coenzyme specificity towards NADP, but did not completely change the specificity. Still, the mutants show the 2′-phosphate of NADP is repelled by Glu-140 (195). Although Glu-140 (195) has a major influence on coenzyme specificity, it is not the only influence since class 3 ALDHs, can use both coenzymes, and class 2 ALDHs, which are NAD-specific, have a glutamate at this position. One explanation may be that the larger space between Lys-137 (192) and the adenine ribose hydroxyls in the class 3 ALDH:NAD binary structure may provide space to accommodate the 2′-phosphate of NADP. Also, a structural shift upon binding NADP may also occur in class 3 ALDHs to help accommodate the 2′-phosphate of NADP.  相似文献   

7.
M F Carlier  D Pantaloni 《Biochemistry》1976,15(21):4703-4712
The binding of reduced nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide phosphate (NADP) dependent isocitrate dehydrogenase from beef liver cytoplasm was studied by several equilibrium techniques (ultracentrifugation, molecular sieving, ultrafiltration, fluorescence). Two binding sites (per dimeric enzyme molecule) were found with slightly different dissociation constants (0.5 and 0.12 muM) and fluorescence yields (7.7 and 6.3). A ternary complex was formed between enzyme, isocitrate, and NADPH, in which NADPH dissociation constant was 5 muM. On the contrary, no binding of NADPH to the enzyme took place in the presence of magnesium isocitrate. Dialysis experiments showed the existence of 1 NADP binding site/dimer, with a dissociation constant of 26 muM. When NADPH was present with the enzyme in the proportion of 1 molecule/dimer, the dissociation constant of NADP was decreased fourfold, reaching a value quantitatively comparable to the Michaelis constant. The kinetics of coenzyme binding was followed using the stopped-flow technique with fluorescence detection. NADPH binding to the enzyme occurred through one fast reaction (k1 = 20 muM-1 s-1). Dissociation of NADPH took place upon NADP binding; however, equilibrium as well as kinetic data were incompatible with a simple competition scheme. Dissociation of NADPH from the enzyme upon magnesium isocitrate binding was preceded by the formation of a transitory ternary complex in which the fluorescence of NADPH was only about 30% of that in the enzyme-NADPH complex. Then interaction between the conenzymes and the involvement of ternary complexes in the catalytic mechanism are discussed in relation with what is known about the regulatory role of the coenzyme (Carlier, M. F., and Pantaloni, D. (1976), Biochemistry, 15, 1761-1766).  相似文献   

8.
The chemical shifts of all the aromatic proton and anomeric proton resonances of NADP+, NADPH, and several structural analogues have been determined in their complexes with Lactobacillus casei dihydrofolate reductase by double-resonance (saturation transfer) experiments. The binding of NADP+ to the enzyme leads to large (0.9-1.6 ppm) downfield shifts of all the nicotinamide proton resonances and somewhat smaller upfield shifts of the adenine proton resonance. The latter signals show very similar chemical shifts in the binary and ternary complexes of NADP+ and the binary complexes of several other coenzymes, suggesting that the environment of the adenine ring is similar in all cases. In contrast, the nicotinamide proton resonances show much greater variability in position from one complex to another. The data show that the environments of the nicotinamide rings of NADP+, NADPH, and the thionicotinamide and acetylpyridine analogues of NADP+ in their binary complexes with the enzyme are quite markedly different from one another. Addition of folate or methotrexate to the binary complex has only modest effects on the nicotinamide ring of NADP+, but trimethoprim produces a substantial change in its environment. The dissociation rate constant of NADP+ from a number of complexes was also determined by saturation transfer.  相似文献   

9.
Polshakov VI  Birdsall B  Feeney J 《Biochemistry》1999,38(48):15962-15969
NMR measurements have been used to investigate rates of ring-flipping and the activation parameters for the trimethoxybenzyl ring of the antibacterial drug trimethoprim (TMP) bound to Lactobacillus casei dihydrofolate reductase (DHFR) for a series of ternary complexes formed with analogues of the coenzyme NADPH. Rates were obtained at several temperatures from line shape analyses ((13)C-edited HSQC (1)H spectra) and transfer of magnetization measurements (zz-HSQC) on complexes containing 3'-O-[(13)C]trimethoprim. Examination of the structures of the complexes indicates that ring-flipping can only be achieved following major conformational changes and transient fluctuations of the protein and coenzyme structure around the trimethoxybenzyl ring. There is no simple correlation between rates of ring-flipping and binding constants. The presence of the coenzyme nicotinamide ring (in either its reduced or its oxidized forms) in the binding site close to the trimethoxybenzyl ring moiety is the major factor reducing the ring-flipping on coenzyme binding. Thus, the ternary complex with NADPH shows the largest reduction in the rate of ring-flipping (11 +/- 3 s(-)(1) at 298 K) as compared with the binary complex (793 +/- 80 s(-)(1) at 298 K). Complexes with NADPH analogues that either have no nicotinamide ring or are known to have their nicotinamide rings removed from the binding site show the smallest reductions. For the DHFR.TMP.NADP(+) complex where there are two conformations present, very different rates of ring-flipping were observed for the two forms. The activation parameters (DeltaH() and DeltaS()) for the ring-flipping in all the complexes are discussed in terms of the protein-ligand interactions and the possible constraints on the pathway through the transition state.  相似文献   

10.
R S Ehrlich  R F Colman 《Biochemistry》1985,24(20):5378-5387
The binding of coenzymes, NADP+ and NADPH, and coenzyme fragments, 2'-phosphoadenosine 5'-(diphosphoribose), adenosine 2',5'-bisphosphate, and 2'-AMP, to pig heart NADP+-dependent isocitrate dehydrogenase has been studied by proton NMR. Transferred nuclear Overhauser enhancement (NOE) between the nicotinamide 1'-ribose proton and the 2-nicotinamide ring proton indicates that the nicotinamide-ribose bond assumes an anti conformation. For all nucleotides, a nuclear Overhauser effect between the adenine 1'-ribose proton and 8-adenine ring proton is observed, suggesting a predominantly syn adenine--ribose bond conformation for the enzyme-bound nucleotides. Transferred NOE between the protons at A2 and N6 is observed for NADPH (but not NADP+), implying proximity between adenine and nicotinamide rings in a folded enzyme-bound form of NADPH. Line-width measurements on the resonances of free nucleotides exchanging with bound species indicate dissociation rates ranging from less than 7 s-1 for NADPH to approximately 1600 s-1 for adenosine 2',5'-bisphosphate. Substrate, magnesium isocitrate, increases the dissociation rate for NADPH about 10-fold but decreases the corresponding rate for phosphoadenosine diphosphoribose and adenosine 2',5'-bisphosphate about 10-fold. These effects are consistent with changes in equilibrium dissociation constants measured under similar conditions. The 1H NMR spectrum of isocitrate dehydrogenase at pH 7.5 has three narrow peaks between delta 7.85 and 7.69 that shift with changes in pH and hence arise from C-4 protons of histidines. One of those, with pK = 5.35, is perturbed by NADP+ and NADPH but not by nucleotide fragments, indicating that this histidine is in the region of the nicotinamide binding site. Observation of nuclear Overhauser effects arising from selective irradiation at delta 7.55 indicates proximity of either a nontitrating histidine or an aromatic residue to the adenine ring of all nucleotides. In addition, selective irradiation of the methyl region of the enzyme spectrum demonstrates that the adenine ring is close to methyl side chains. The substrate magnesium isocitrate produces no observable differences in these protein--nucleotide interactions. The alterations in enzyme--nucleotide conformation that result in changes in affinity in the presence of substrate must involve either small shifts in the positions of amino acid side chains or changes in groups not visible in the proton NMR spectrum.  相似文献   

11.
R S Ehrlich  R F Colman 《Biochemistry》1992,31(49):12524-12531
The coenzyme selectivity of pig heart NAD-dependent and NADP-dependent isocitrate dehydrogenase has been investigated by nuclear magnetic resonance through the use of coenzyme analogues. For both isocitrate dehydrogenases, more than 10-fold lower maximal activity is observed with thionicotinamide adenine dinucleotide [sNAD(P)+] than with NAD(P)+ or acetylpyridine adenine dinucleotide [acNAD-(P)+] as coenzyme. Nuclear Overhauser effect measurements failed to reveal any differences in the adenine-ribose conformations among the enzyme-bound analogues. The 2'-phosphate resonance of the enzyme-bound NADP+ analogues showed the same change in chemical shift observed for the natural coenzyme and revealed the same lack of pH dependence in the range from pH 5.4 to 8.2. NADP-dependent isocitrate dehydrogenase exhibits only small differences in Michaelis constants for the coenzymes with various nicotinamide substituents, reflecting a predominant role for the adenosine moiety in binding. The conformation of the bound nicotinamide-ribose of the natural coenzymes was appreciably different from that of the coenzyme, sNAD(P)+, which shows low catalytic activity. For both isocitrate dehydrogenases, sNAD(P)+ bound to the enzymes exhibits a mixture of syn and anti conformations while only the anti conformation can be detected for NAD(P)+. Chemical shifts of NAD(P)+ enriched with 13C in the carboxamide indicate that interaction of this group with the enzymes may play a role in positioning the nicotinamide ring to participate in catalysis. Our results suggest that, although interaction of the nicotinamide moiety with the enzymes contributes relatively little to the energy of interaction in the binary complex, the enzymes must correctly position this group for the catalytic event.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Rat liver S-adenosylhomocysteinase, a homotetramer, was resolved by treatment with acid ammonium sulfate into apoenzyme and NAD. The apoenzyme thus prepared retained a tetrameric structure but differed in the mobility on nondenaturing polyacrylamide gel electrophoresis. The inactive apoenzyme was reactivated upon incubation with NAD. The restoration of activity paralleled with the tight binding of NAD to apoenzyme, and full activity was obtained when 4 mol of NAD were bound per mol of apoenzyme. The kinetics of reconstitution were apparently biphasic and suggest the existence of two conformers in a slow equilibrium, one of which binds the coenzyme rapidly while the other does so very slowly, if at all. In addition to NAD, apoadenosylhomocysteinase tightly bound nicotinamide hypoxanthine dinucleotide, 3-acetylpyridine adenine dinucleotide and nicotinic acid-adenine dinucleotide. NADP was not bound. Catalytic activity was found only with the enzyme reconstituted with NAD or nicotinamide hypoxanthine dinucleotide. The spectral change observed on interaction of apoadenosylhomocysteinase with NAD was similar to those seen with adenine nucleotides, and was largely approximated by the addition of dioxane to aqueous solutions of adenine nucleotides. By comparison of the difference spectra, it is suggested that the adenine portion of the coenzyme is bound in the hydrophobic pocket of the protein, and that the binding is accompanied by perturbation of tryptophan residue of the protein.  相似文献   

13.
自然界中依赖烟酰胺类辅酶(NAD+或NADP+)的脱氢酶是氧化还原酶中最重要的一类,基于此类酶的生物传感器应用前景广阔,近年来发展迅速。构建这类传感器需要两项关键技术,即氧化型辅酶在电极表面的再生和辅酶固定化。本文介绍了辅酶电化学再生的主要方法、辅酶固定化的常见手段,以及相关的研究进展。  相似文献   

14.
Plasmid-encoded bacterial R67 dihydrofolate reductase (DHFR) is a NADPH-dependent enzyme unrelated to chromosomal DHFR in amino acid sequence and structure. R67 DHFR is insensitive to the bacterial drug trimethoprim in contrast to chromosomal DHFR. The crystal structure of Q67H mutant of R67 DHFR bound to NADP(+) has been determined at 1.15 angstroms resolution. The cofactor assumes an extended conformation with the nicotinamide ring bound near the center of the active site pore, the ribose and pyrophosphate group (PP(i)) extending toward the outer pore. The ribonicotinamide exhibits anti conformation as in chromosomal DHFR complexes. The relative orientation between the PP(i) and the nicotinamide ribose differs from that observed in chromosomal DHFR-NADP(+) complexes. The coenzyme displays symmetrical binding mode with several water-mediated hydrogen bonds with the protein besides ionic, stacking, and van der Waals interactions. The structure provides a molecular basis for the observed stoichiometry and cooperativity in ligand binding. The ternary model based on the present structure and the previous R67 DHFR-folate complex provides insight into the catalytic mechanism and indicates that the relative orientation of the reactants in plasmid DHFR is different from that seen in chromosomal DHFRs.  相似文献   

15.
We measured both pyridine nucleotide levels and ribonucleotide reductase-specific activity in Yoshida ascites hepatoma cells as a function of growth in vivo and during recruitment from non-cycling to cycling state in vitro. Oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADP) levels remained unchanged during tumour growth, while NADP+ and reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels were very high in exponentially growing cells and markedly decreased in the resting phase. Ribonucleotide reductase activity paralleled NADP(H) (NADP+ plus NADPH) intracellular content. The concomitant increase in both NADP(H) levels and ribonucleotide reductase activity was also observed during G1-S transition in vitro. Cells treated with hydroxyurea showed a comparable correlation between the pool size of NADP(H) and ribonucleotide reductase activity. On the basis of these findings, we suggest that fluctuations in NADP(H) levels and ribonucleotide reductase activity might play a critical role in cell cycle regulation.  相似文献   

16.
The nicotinamide nucleotide transhydrogenases (TH) of mitochondria and bacteria are membrane-intercalated proton pumps that transduce substrate binding energy and protonmotive force via protein conformational changes. In mitochondria, TH utilizes protonmotive force to promote direct hydride ion transfer from NADH to NADP, which are bound at the distinct extramembranous domains I and III, respectively. Domain II is the membrane-intercalated domain and contains the enzyme's proton channel. This paper describes the crystal structure of the NADP(H) binding domain III of bovine TH at 1.2 A resolution. The structure reveals that NADP is bound in a manner inverted from that previously observed for nucleotide binding folds. The non-classical binding mode exposes the NADP(H) nicotinamide ring for direct contact with NAD(H) in domain I, in accord with biochemical data. The surface of domain III surrounding the exposed nicotinamide is comprised of conserved residues presumed to form the interface with domain I during hydride ion transfer. Further, an adjacent region contains a number of acidic residues, forming a surface with negative electrostatic potential which may interact with extramembranous loops of domain II. Together, the distinctive surface features allow mechanistic considerations regarding the NADP(H)-promoted conformation changes that are involved in the interactions of domain III with domains I and II for hydride ion transfer and proton translocation.  相似文献   

17.
Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) are of universal occurrence in living organisms and play a central role in coupling oxidative with reductive reactions. However, the evidence that the origin and early evolution of life occurred at high temperatures (>95°C) is now strong, and at these temperatures some modern metabolites, including both the reduced and oxidized forms of these coenzymes, are unstable. We believe there is good evidence that indicates that in the most primitive organisms nonhem iron proteins carried out many or all of the functions of NAD/P(H). This has important implications for the way in which investigations of archaebacterial metabolism are conducted.Abbreviations NAD/P(H)a Oxidised and reduced forms of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate  相似文献   

18.
19.
Streptococcus faecalis grown with glucose as the primary energy source contains a single, nicotinamide adenine dinucleotide phosphate (NADP)-specific 6-phosphogluconate dehydrogenase. Extracts of gluconate-adapted cells, however, exhibited 6-phosphogluconate dehydrogenase activity with either NADP or nicotinamide adenine dinucleotide (NAD). This was shown to be due to the presence of separate enzymes in gluconate-adapted cells. Although both enzymes catalyzed the oxidative decarboxylation of 6-phosphogluconate, they differed from one another with respect to their coenzyme specificity, molecular weight, pH optimum, K(m) values for substrate and coenzyme, and electrophoretic mobility in starch gels. The two enzymes also differed in their response to certain effector ligands. The NADP-linked enzyme was specifically inhibited by fructose-1,6-diphosphate, but was insensitive to adenosine triphosphate (ATP) and certain other nucleotides. The NAD-specific enzyme, in contrast, was insensitive to fructose-1,6-diphosphate, but was inhibited by ATP. The available data suggest that the NAD enzyme is involved primarily in the catabolism of gluconate, whereas the NADP enzyme appears to function in the production of reducing equivalents (NADPH) for use in various reductive biosynthetic reactions.  相似文献   

20.
The three-dimensional structure of a ternary complex of horse liver alcohol dehydrogenase with reduced nicotinamide adenine dinucleotide and the inhibitor dimethyl sulfoxide has been determined to 4.5 A resolution independently of the apoenzyme structure. The electron density maps of both structures have been compared. The two coenzyme binding domains which form the center of the dimer molecular have retained their conformation and orientation within the molecule whereas the catalytic domains rotate and narrow the cleft between the domains. The active site becomes shielded from the solution by a combination of this rotation, local movements of a loop from residues 53 to 57 and coenzyme and substrate binding. Both subunits bind coenzyme and inhibitor to the same extent. The nicotinamide ring of the coenzyme is positioned close to the active zinc atom and the inhibitor is bound to this zinc atom. The difference between the two crystallographically independent subunits is small. The proposed mechanisms of action for the enzyme based on the apoenzyme structure are confirmed by the present investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号