首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paterson  Eric  Sim  Allan 《Plant and Soil》1999,216(1-2):155-164
This study investigated the effects of N-supply and partial defoliation on C-partitioning, root morphology and soluble rhizodeposition, for Lolium perenne grown in axenic sand culture systems percolated with nutrient solution. Plants were grown for 36 d in nutrient solutions with differing N concentrations (4 mM or 0.02 mM NH4 +NO3 -), and effects of repeated defoliation to 4 cm were determined. The ‘low N’ supply reduced (P < 0.05) dry matter accumulation, with proportionately increased partitioning to the root systems. Root morphology was also altered at ‘low N’, with development of a finer root system, manifest as increased (P < 0.05) specific root length. Concurrent with these effects on growth of L. perenne, ‘low N’ increased (P < 0.05) exudation of C-compounds from roots on a per g root basis. Defoliation was found to increase exudation (P < 0.05) of soluble compounds for periods of 3-5 d following each cut, at both N-supply rates. The effects of N-supply and defoliation are of importance in understanding the coupling of plant productivity to nutrient cycling in soils with differing N availabilities and for grassland systems which are subject to grazing. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 μL L(-1)) and elevated (780 μL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.  相似文献   

3.
The objective of this work was to determine if the impact of nitrogen (N) on the release of organic carbon (C) into the soil by roots (rhizodeposition) correlated with the effect of this nutrient on some variables of plant growth. Lolium multiflorum Lam. was grown at two levels of N supply, either in sterile sand percolated with nutrient solution or in non-sterile soil. The axenic sand systems allowed continuous quantification of rhizodeposition and accurate analysis of root morphology whilst the soil microcosms allowed the study of 14C labelled C flows in physico-chemical and biological conditions relevant to natural soils. In the axenic sand cultures, enhanced N supply strongly increased the plant biomass, the plant N content and the shoot to root ratio. N supply altered the root morphology by increasing the root surface area and the density of apices, both being significantly positively correlated with the rate of organic C release by plant roots before sampling. This observation is consistent with the production of mucilage by root tips and with mechanisms of root exudation reported previously in the literature, i.e. the passive diffusion of roots solutes along the root with increased rate behind the root apex. We proposed a model of root net exudation, based on the number of root apices and on root soluble C that explained 60% of the variability in the rate of C release from roots at harvest. The effects of N on plant growth were less marked in soil, probably related to the relatively high supply of N from non-fertiliser soil-sources. N fertilization increased the shoot N concentration of the plants and the shoot to root ratio. Increased N supply decreased the partitioning of 14C to roots. In parallel, N fertilisation increased the root soluble 14C and the 14C recovered in the soil per unit of root biomass, suggesting a stimulation of root exudation by N supply. However, due to the high concentration of N in our unfertilised plants, this stimulation was assumed to be very weak because no significant effect of N was observed on the microbial C and on the bacterial abundance in the rhizosphere. Considering the difficulties in evaluating rhizodeposition in non sterile soil, it is suggested that the root soluble C, the root surface area and the root apex density are additional relevant variables that should be useful to measure along with the variables that are commonly determined when investigating how plant functioning impacts on the release of C by roots (i.e soil C, C of the microbial biomass, rhizosphere respiration).  相似文献   

4.
THORNTON  B. 《Annals of botany》1991,68(6):569-576
Overwintering, rooted basal internodes of Molinia caerulea (L.)Moench were taken from the field and subjected to four nutritiontreatments [an adequate (high) and suboptimal (low) level ofnitrogen (N) x an adequate (high) and suboptimal (low) levelof phosphorus (P)] and three degrees of defoliation (12 treatmentsin total). Growth parameters were studied using both non-destructivemeasurements and destructive harvesting. High N supply and highP supply increased both the number of tillers and mass of eachtiller. Interactions between the effects of N and P did occurfor several growth variables; in general this was due to anabsence of a response to P supply at low N. Defoliation reducedthe dry weight of basal internodes and roots produced and temporarilyreduced leaf dry weight per tiller. There were no effects ofdefoliation on tillering. Interactions of defoliation with bothN supply and P supply were observed. Leaf extension rate wasincreased by defoliation at low, but not high N, and the adverseeffects of defoliation on root dry weight and root/shoot (R/S)ratios were proportionally greater at low N. The results arediscussed in relation to other investigations which have reportedcontrasting aspects of Molinia growth in response to both nutrientsand defoliation. Molinia caerulea, purple moor grass, nitrogen, phosphorus, defoliation  相似文献   

5.
利用空间代替时间的方法,研究了浙江省仙居县3、9、14、21年生根系和土壤微生物量碳(C)、氮(N)、磷(P含量及化学计量比。结果表明,杨梅根系C、C:N在不同林龄间没有显著差异;随着林龄的增加,根系N、P含量降低,而C:P、N:P则增大; 21年生杨梅根系N含量显著低于3年生(P<0.05),磷含量显著低于其他林龄(P<0.05); 21年生杨梅根系C:P、N:P显著高于其他林龄(P<0.05)。从根系N:P的变化可知,随着林龄增大,杨梅生长受到P的限制更加明显。土壤微生物量碳(MBC)、微生物量氮(MBN)、微生物量磷(MBP)含量和MBC:MBN、MBC:MBP表现为先明显下降而后略有升高,而MBN:MBP总体呈现上升趋势。3年生杨梅MBC含量和MBC:MBN显著高于其他林龄(P<0.05),MBN、MBP含量显著高于9年生(P<0.05); 9年生MBC:MBP显著低于其他林龄(P<0.05); 3年生0—10 cm土层的MBN:MBP显著低于其他林龄(P<0.05),而21年生的10—30 cm土层的MBN:MBP显著高于其他林龄(P...  相似文献   

6.
Ourry A  Kim TH  Boucaud J 《Plant physiology》1994,105(3):831-837
An experiment was designed to study the role of N and C reserves on regrowth of the shoots following defoliation of forage species. Starch and N accumulation in root and crown tissue of nonnodulated Medicago sativa L. were modified during regrowth by applying different levels of N and different cutting heights. Plants were obtained with similar crown and root dry weights, but having either low starch and high tissue N or high starch and low tissue N. The plants were then submitted to a second defoliation and supplied with optimal N nutrition, and N flow from reserve was quantified using pulse-chase 15N labeling. Maximum yields following the second regrowth were obtained from those plants having a high tissue N, despite their low level of nonstructural carbohydrate. When N in the roots and crown exceeded 5 mg N plant-1 at the beginning of regrowth, about 68% was translocated to regrowing shoots. Highly significant correlations were also found between the amounts of N available in roots and crown at the beginning of regrowth and (a) the amount of N that was mobilized to new tissues, (b) the amount of N taken up during the regrowth period, and (c) the final shoot yield after 24 d of regrowth. No similar correlations were found for plants that varied in their initial starch content of roots and crown. It is suggested that N reserves were used mainly during the first 10 d after defoliation, and that the resulting aerial growth during this period should be sufficient to restore N2 fixation and/or N uptake to levels equal to those prior to defoliation. These data emphasize (a) the importance of root N reserves in initiating and sustaining new shoot growth, and (b) the need for a re-evaluation of the contribution of C reserves to shoot regrowth.  相似文献   

7.
Summary The hypothesis was tested that faster growth of nitrophilic plants at high nitrogen (N) nutrition is counterbalanced by faster growth of non-nitrophilic plants at low N-nutrition. Ten annual plant species were used which originated from habitats of different N-availability. The species' preference for N was quantified by the N-number of Ellenberg (1979), a relative measure of nitrophily. The plants were cultivated in a growth cabinet at five levels of ammonium-nitrate supply. At low N-supply, the relative growth rate (RGR) was independent of nitrophily. At high N-supply, RGR tended to be higher in nitrophilic than in non-nitrophilic species. However, the response of RGR to N-supply was strongly and positively correlated with the nitrophily of species. Increasing N-supply enhanced partitioning to leaf weight per total biomass (LWR) and increased plant leaf area per total biomass (LAR). Specific leaf weight (SLW) and LWR were both higher in non-nitrophilic than in nitrophilic species at all levels of N-nutrition. NAR (growth per leaf area or net assimilation rate) increased with nitrophily only under conditions of high N-supply. RGR correlated positively with LAR, irrespective of N-nutrition. Under conditions of high N-supply RGR correlated with SLW negatively and with NAR positively.  相似文献   

8.
The grazing tolerance mechanism of ryegrass was investigated by examining the effects of roots on leaves under frequent defoliation. The study consisted of four treatments: (1) with root breaking and cytokinin spraying, (2) root breaking without cytokinin spraying, (3) cytokinin spraying with no root breaking, and (4) no root breaking and no cytokinin spraying. Results showed that root breaking or frequent defoliation inhibited the ryegrass regrowth, which resulted in low biomass of the newly grown leaves and roots, as well as low soluble carbohydrate content and xylem sap quantity in the roots. Spraying with exogenous cytokinin promoted the increase in newly grown leaf biomass, but decreased root biomass, root soluble carbohydrate content, and root xylem sap quantity. Determination of gibberellic acid, indole-3-acetic acid, abscisic acid, and zeatin riboside (ZR) in roots, newly grown leaves, and stubbles showed that cytokinin is a key factor in ryegrass regrowth under frequent defoliation. Root breaking and frequent defoliation both decreased the ZR content in roots and in newly grown leaves, whereas spraying with exogenous cytokinin increased the ZR content in roots and in newly grown leaves. Therefore, cytokinin enhances the above ground productivity at the cost of root growth under frequent defoliation.  相似文献   

9.
* A dual-isotope, microcosm experiment was conducted with Quercus rubra (red oak) seedlings to test the hypothesis that foliar herbivory would increase belowground carbon allocation (BCA), carbon (C) rhizodeposition and nitrogen (N) uptake. Plant BCA links soil ecosystems to aboveground processes and can be affected by insect herbivores, though the extent of herbivore influences on BCA is not well understood in woody plants. * Microcosms containing 2-yr-old Q. rubra seedlings and soil collected from the Coweeta Hydrologic Laboratory (NC, USA) were subjected to herbivory or left as undamaged controls. All microcosms were then injected with 15N-glycine and pulsed with 13CO2. * Contrary to our hypothesis, herbivore damage reduced BCA to fine roots by 63% and correspondingly increased allocation of new C to foliage. However, 13C recoveries in soil pools were similar between treatments, suggesting that exudation of C from roots is an actively regulated component of BCA. Herbivore damage also reduced N allocation to fine roots by 39%, apparently in favor of storage in taproot and stem tissues. * Oak seedlings respond to moderate insect herbivore damage with a complex suite of allocation shifts that may simultaneously increase foliar C, maintain C rhizodeposition and N assimilation, and shift N resources to storage.  相似文献   

10.
The ten year cycle of the willow grouse of Lower Kolyma   总被引:1,自引:0,他引:1  
A. Andreev 《Oecologia》1988,77(2):261-267
Summary The effects of defoliation on growth and nitrogen (N) nutrition were examined in populations of Agropyron smithii (western wheatgrass) collected from a heavily grazed black-tailed prairie dog (Cynomys ludovicianus) colony (ON-colony) and a nearby lightly grazed, uncolonized area (OFF-colony). Defoliated and nondefoliated plants were grown at low soil N availability with similar sized defoliated individuals of A. smithii from a grazing-exclosure population as a common competitor. Sequential harvests were made over 24 days following defoliation. Growth analysis plus biomass and N yield and distribution data were used to identify features which may contribute to plant defoliation tolerance. Defoliation reduced total production 34% across populations. Defoliated plants produced as much new blade tissue, but only 67% as much new root biomass as did nondefoliated controls. Plants from prairie dog colonies accumulated biomass at a faster relative rate than did plants from uncolonized sites, in part, because of a 250% greater mean relative growth rate of blades and more than 200% greater rate of biomass production per unit blade biomass. Total N accumulation was significantly greater in defoliated ON- than OFF-colony individuals. The mean relative accumulation rate of N was increased by defoliation in ON-colony plants, but reduced by defoliation in OFF-colony plants. The mean rate of N accumulation per unit root biomass was more than 300% greater in the ON- than OFF-colony population. Colony plants initially had a greater proportion of biomass and N remaining after defoliation in roots. Initial differences between populations in the distribution of biomass and N were eliminated as colony plants concentrated 24-day accumulation of biomass and N in aboveground structures. The data suggest that the combination of growth, N nutrition, and biomass and N distribution characteristics of the colony population likely confer a high rate of resource capture on heavily grazed prairie dog colonies.  相似文献   

11.
The growth-promoting effects of gibberellins (GAs) on plants are well documented, but a complete growth analysis at the whole plant level on plants with an altered GA biosynthesis has never been reported. In the present work, the relative growth rate (RGR), biomass partitioning and morphological parameters of wildtype (Wt) tomato ( Solanum lycopersicum L. cv. Moneymaker) plants were compared with those of isogenic ( gib ) mutants with a reduced biosynthesis of gibberellins. GA deficiency reduced RGR and specific leaf area (SLA, leaf area per unit leaf mass) and increased the net assimilation rate (NAR, the rate of biomass increment per unit leaf area). Despite the free access to nitrogen in the rooting medium, the low-GA mutants had a much higher root mass ratio (RMR, the root mass per unit plant biomass) than the Wt, suggesting that the mutants were disturbed in their growth response to nitrate supply. The experiment was repeated at a low exponential nitrate supply, which forced all plants to grow at the same low RGR. The persistence of the differences in RMR at low N-supply indicated that the high RMR of the mutants was a direct effect of low GA, which was independent of nitrate supply. Because the low N-supply increased the RMRs of all genotypes to the same extent, the response of RMR to N-supply does not seem to depend on GA. Although many of the traits of the slow growing GA mutants were very similar to those of inherently slow growing plant species from unproductive habitats, gibberellins are unlikely to be a main determinant of a plant's potential RGR.  相似文献   

12.
干旱条件下接种AM真菌对小马鞍羊蹄甲幼苗根系的影响   总被引:2,自引:0,他引:2  
张亚敏  马克明  曲来叶 《生态学报》2017,37(8):2611-2619
为了探讨岷江干旱河谷丛枝菌根真菌(AMF)对寄主植物幼苗根系的影响,通过接种购买的AMF摩西球囊霉菌(Funneliformis mosseae)到优势乡土灌木小马鞍羊蹄甲(Bauhinia faberi var.microphylla)幼苗,在重度、中度和轻度干旱条件下培养3个月,研究不同干旱条件下AMF对幼苗根系形态特征、结构特征、功能性状的影响。方差分析结果表明:(1)3种干旱胁迫条件下,接菌均显著增加了幼苗的根总长、根表面积、根分枝数、根尖数(P0.001),在中度胁迫和轻度胁迫下,接菌显著促进根鲜重、根体积的增加(P0.001),轻度胁迫条件下接菌幼苗的根鲜重、根总长、根表面积、根体积、根尖数最高并显著高于其它处理,但接菌与未接菌的根平均直径之间没有显著差异;(2)接菌幼苗根系趋向于叉状分支结构,在重度胁迫时,叉状分支趋势更显著(P0.001);(3)接菌幼苗的根比例都显著小于未接菌的,但幼苗比根长不存在显著差异。相关分析结果表明:菌根侵染率与根鲜重、根总长、根表面积、根体积、根分枝数、根尖数呈极显著正相关(P0.001),与拓扑指数、根比例呈极显著负相关(P0.001)。研究表明,在干旱条件下,AMF虽然没有提高生长初期的根系的吸收效率,但接种AMF显著影响幼苗根系形态特征和结构特征,更利于植物适应干旱环境,并且AMF对幼苗根系的促生作用随着干旱胁迫程度减轻而提高。  相似文献   

13.
In previous experiments systematic differences have been found in the morphology, carbon economy and chemical composition of seedlings of inherently fast- and slow-growing plant species, grown at a non-limiting nutrient supply. In the present experiment it was investigated whether these differences persist when plants are grown at suboptimal nutrient supply rates. To this end, plants of the inherently fast-growing Holcus lanatus L. and the inherently slow-growing Deschampsia flexuosa (L.) Trin. were grown in sand at two levels of nitrate supply. Growth, photosynthesis, respiration and carbon and nitrogen content were studied over a period of 4 to 7 weeks. At low N-supply, the potentially fast-growing species still grew faster than the potentially slow-growing one. Similarly, differences in leaf area ratio (leaf area:total dry weight), specific leaf area (leaf area:leaf dry weight) and leaf weight ratio (leaf dry weight:total dry weight), as observed at high N-supply persisted at low N-availability. The only growth parameter for which a substantial Species × N-supply interaction was found was the net assimilation rate (increase in dry weight per unit leaf area and time). Rates of photosynthesis, shoot respiration and root respiration, expressed per unit leaf, shoot and root weight, respectively, were lower for the plants at low N-availability and higher for the fast-growing species. Species-specific variation in the daily carbon budget was mainly due to variation in carbon fixation. Lower values at low N were largely determined by both a lower C-gain of the leaves and a higher proportion of the daily gain spent in root respiration. Interspecific variation in C-content and dry weight:fresh weight ratio were similar at low and high N-supply. Total plant organic N decreased with decreasing N-supply, without differences between species. It is concluded that most of the parameters related to growth, C-economy and chemical composition differ between species and/or are affected by N-supply, but that differences between the two species at high N-availability persist at low N-supply.  相似文献   

14.
Large-scale outbreaks of defoliating insects are common in temperate forests. The effects of defoliation on tree physiology are expected to cascade through the entire forest ecosystem, altering carbon, nitrogen, and water fluxes, and subsequently affecting nitrogen cycling and plant-herbivore interactions. If these post-defoliation changes are largely driven by N deficiency, tree root system responses to defoliation should be central to regulating the long-term effects of defoliation; N fertilization should reverse the effects. We examined these phenomena in a 3-year large-scale replicated manipulative field experiment in a hybrid poplar plantation, where we regulated defoliation by gypsy moths as well as nitrogen availability. To our knowledge, this is the first manipulative field experiment at this scale to examine the effects of severe insect defoliation on whole-tree physiology. Defoliation decreased tree growth and increased the rate of top dieback in the stand. Defoliation led to transient declines in carbon allocation to starch in fine roots, trunk, and twigs in the year of heaviest defoliation. Root production and root mortality were unaffected by the heaviest defoliation, but nitrate and ammonium uptake were strongly depressed. N fertilization increased tree growth, but did not alter defoliation effects on starch accumulation or top dieback. Defoliation and fertilization treatments did not interact. In this system, defoliation effects on tree recovery of leaf nitrogen lost to herbivory were primarily driven by effects on nitrogen uptake, rather than effects on root production or mortality.  相似文献   

15.
Engels  C. 《Annals of botany》1994,73(2):211-219
Maize (Zea mays L.) and spring wheat (Triticum aestivum L.)were grown in nutrient solution at uniformly high air temperature(20 °C), but different root zone temperatures (RZT 20, 16,12 °C). To manipulate the ratio of shoot activity to rootactivity, the plants were grown with their shoot base includingthe apical meristem either above (i.e. at 20 °C) or withinthe nutrient solution (i.e. at 20, 16 or 12 °C). In wheat, the ratio of shoot:root dry matter partitioning decreasedat low RZT, whereas the opposite was true for maize. In bothspecies, dry matter partitioning to the shoot was one-sidedlyincreased when the shoot base temperature, and thus shoot activity,were increased at low RZT. The concentrations of non-structuralcarbohydrates (NSC) in the shoots and roots were higher at lowin comparison to high RZT in both species, irrespective of theshoot base temperature. The concentrations of nitrogen (N) inthe shoot and root fresh matter also increased at low RZT withthe exception of maize grown at 12 °C RZT and 20 °Cshoot base temperature. The ratio of NSC:N was increased inboth species at low RZT. However this ratio was negatively correlatedwith the ratio of shoot:root dry matter partitioning in wheat,but positively correlated in maize. It is suggested that dry matter partitioning between shoot androots at low RZT is not causally related to the internal nitrogenor carbohydrate status of the plants. Furthermore, balancedactivity between shoot and roots is maintained by adaptationsin specific shoot and root activity, rather than by an alteredratio of biomass allocation between shoot and roots.Copyright1994, 1999 Academic Press Wheat, Triticum aestivum, maize, Zea mays, root temperature, shoot meristem temperature, biomass allocation, shoot:root ratio, carbohydrate status, nitrogen status, functional equilibrium  相似文献   

16.
Plants of Molinia caerulea were grown in pots for two seasonsat two levels of nitrogen (N) supply and two levels of defoliation.All N supplied was enriched with 15N in the first season andwas at natural abundance in the second season. This allowedthe contribution of remobilization from overwintering storesto be discriminated from current root uptake in supplying Nfor new shoot growth in the second season. The effects of Nsupply and defoliation upon the internal cycling of N in M.caerulea were quantified. N was remobilized from both roots and basal internodes to supportnew shoot, especially leaf, growth in spring. Roots suppliedmore N than basal internodes. Since the remobilization mainlyoccurred before the onset of root N uptake, internal cyclingwas important for the earliest period of shoot growth. An increasedN supply increased the amount of N remobilized to new shootgrowth, however, the proportion of N remobilized from overwinteringstores was independent of N supply. Defoliation increased theamount of N remobilized from the roots, and had no effect onthe 15N content of basal internodes of plants receiving a lowsupply of N. Remobilization of N from leaves of undefoliatedplants occurred later in the season. Remobilization from leavessupplied flowers in plants receiving a low N supply and bothflowers and new basal internodes in plants receiving a higherN supply. Key words: Molinia caerulea, internal cycling, nitrogen, defoliation  相似文献   

17.
The distribution of net assimilated C in barley (Hordeum vulgare L.) grown at two N-levels was determined in a growth chamber. The N-fertilization involved 0 and 3.61 mol N g-1 dry soil. After growth for seven weeks in an atmosphere with continuously 14C-labelled CO2, 14C was determined in shoots, roots, rhizosphere respiration and soil. At the low N-level, 32% of the net assimilated 14C was translocated below ground, whereas at the high N-level 27% was translocated below ground. The release of C from roots (root respiration, microbial respiration originating from decomposition of 14C-labelled root material and 14C remaining in soil) was greater with no N-supply (19% of net assimilated 14C) than in the treatment with N-supply (15%). Thus, the effect of N-supply on both translocation of assimilated 14C below ground and the release of 14C from growing roots was relatively small.  相似文献   

18.
叶片被取食会导致树木生长发育和生理代谢发生显著的变化。目前对细根动态如何对叶片损失做出响应的了解仍然有限。以生物量分配和高生长策略不同的水曲柳(Fraxinus mandschurica)和落叶松(Larix gmelinii)苗木为研究对象, 进行了不同强度的人为去叶处理(叶面积去除0% (对照)、40%和80%), 采用微根管技术对细根(直径≤2 mm)生产和死亡的季节动态进行了定量观测, 同期测定了地上部分(苗高和地径)的生长。结果表明: 1)去叶降低了两树种苗高(统计上均不显著)和地径的生长, 但是对苗高生长的影响小于地径。随着去叶强度的提高, 苗木地上生长受到的影响加大, 生长季末期水曲柳苗高比对照降低3.3%-12.1%, 地径降低5.7%-23.1%; 而落叶松苗高和地径降低相对较少(< 12%)。2)去叶显著地减少了水曲柳和落叶松细根现存量(p< 0.001), 其相对增长量((去叶后现存量高峰-去叶当日现存量)/去叶当日现存量)随着去叶强度的加大而降低。3)与对照相比, 去叶后两树种细根生产量显著减少(p< 0.05), 而细根死亡量在不同处理间没有显著差异。综合来看, 去叶对水曲柳地上部分(特别是地径)生长影响较大, 而对落叶松地下部分(主要是新根)生长影响较大。研究结果为理解冠层碳供应对根系动态影响的种间差异及其机制提供了必要的理论依据。  相似文献   

19.
This study focuses on the influence of nitrogen (N) availability and species on rhizodeposition and on decomposition of rhizodeposits, roots and soil organic matter. Four perennial grass species were studied that are characteristic of grassland habitats that differ in nutrient availability. These perennial grass species, Holcus lanatus L., Festuca rubra L., Anthoxanthum odoratum L. and Festuca ovina L., were homogeneously labeled with 14CO2. Plants were grown on soil without N addition and with N addition (14 g N m–2). After 8 weeks, plants were harvested and root production and the remaining amount of rhizodeposits in the soil were measured. 14C-labelled roots were incubated in fresh soil. Decomposition was measured of 1) the labeled rhizodeposits in the soil in which the plants had been growing and 2) the labeled dead roots incubated in fresh soil, by trapping the evolved 14CO2, over 69 days.In general, decomposability of both roots and rhizodeposits increased when nitrogen availability increased. Moreover, the species differed in their response to N. Higher N supply increased total rhizodeposition of H. lanatus and the decomposability of rhizodeposited carbon compounds of this high fertility species was greater than of the low fertility species F. ovina, but lower than of A. odoratum. The presented study gives no evidence for a relation between root decomposition rate and the nutrient availability of the habitat of the four species. Overall, we suggest on the basis of the results that species can affect nutrient cycling by differences in rates of rhizodeposition and litter production. This offers a mechanism whereby species can influence species replacement during succession.  相似文献   

20.
Grapevine (Vitis vinifera) roots and leaves represent major carbohydrate and nitrogen (N) sources, either as recent assimilates, or mobilized from labile or storage pools. This study examined the response of root and leaf primary metabolism following defoliation treatments applied to fruiting vines during ripening. The objective was to link alterations in root and leaf metabolism to carbohydrate and N source functioning under conditions of increased fruit sink demand. Potted grapevine leaf area was adjusted near the start of véraison to 25 primary leaves per vine compared to 100 leaves for the control. An additional group of vines were completely defoliated. Fruit sugar and N content development was assessed, and root and leaf starch and N concentrations determined. An untargeted GC/MS approach was undertaken to evaluate root and leaf primary metabolite concentrations. Partial and full defoliation increased root carbohydrate source contribution towards berry sugar accumulation, evident through starch remobilization. Furthermore, root myo‐inositol metabolism played a distinct role during carbohydrate remobilization. Full defoliation induced shikimate pathway derived aromatic amino acid accumulation in roots, while arginine accumulated after full and partial defoliation. Likewise, various leaf amino acids accumulated after partial defoliation. These results suggest elevated root and leaf amino N source activity when leaf N availability is restricted during fruit ripening. Overall, this study provides novel information regarding the impact of leaf source restriction, on metabolic compositions of major carbohydrate and N sources during berry maturation. These results enhance the understanding of source organ carbon and N metabolism during fruit maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号