首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Islets of Langerhans isolated from adult rats were maintained in tissue culture for 3 days in the continued presence of [3H]leucine. Labelled proinsulin, C-peptide and insulin were measured by quantitative h.p.l.c., a method which also allowed for resolution of C-peptide I and II, and of insulin I and II (the products of the two rat insulin genes). The results showed that: (1) at early times, proinsulin was the major radiolabelled product; with progressive time in culture, intra-islet levels of [3H]proinsulin decreased, despite continuous labelling with [3H]leucine, indicating that the combined rates of proinsulin conversion into insulin and of proinsulin release, exceeded the rate of synthesis; (2) insulin I levels were always greater than those of insulin II, both in the islets and for products released to the medium; (3) the molar ratio of [3H]insulin I and II to their respective 3H-labelled C-peptides increased with time for products retained within islets, reaching a value close to 3:1 by 3 days; by contrast, for products released to the medium during the culture period, the ratio was always close to unity; (4) when islets were incubated with [3H]leucine for 2 days, and then left for a further 1 day without label (chase period), the intra-islet [3H]insulin/[3H]C-peptide ratios rose to values as high as 9:1. Again, for material released to the medium, the values were close to 1:1; (5) it is concluded that C-peptide is degraded more rapidly than insulin within islet cells, thereby accounting for the elevated insulin/C-peptide ratios. The difference between the ratios observed in the islets and those for material released to the medium is taken to indicate that degradation occurs in a discrete cellular compartment and not in the secretory granule itself.  相似文献   

2.
The effects of glucose on insulin biosynthesis were studied by measuring the incorporation of radiolabelled amino acids into proinsulin/insulin in isolated rat islets. The islets were pulse labelled for 15 min with [3H]leucine (present in rat insulin I and II) or [35S]methionine (unique to rat insulin II) and then incubated for a 165 min post-label (chase) period during which the majority of labelled proinsulin was converted to insulin but under conditions whereby greater than 95% of radiolabelled proinsulin or insulin was retained in the islets. The newly synthesized, labelled, insulin was analyzed by high performance liquid chromatography. Rat I and II insulin biosynthesis was stimulated by 16.7 mM glucose to the same extent.  相似文献   

3.
Horseradish peroxidase uptake and crinophagy in insulin-secreting cells   总被引:3,自引:0,他引:3  
Upon exposure of pancreatic B cells to exogenous horseradish peroxidase (HRP), a population of secretory granules becomes HRP-labelled. In isolated islets of Langerhans, we studied the fate of HRP-labelled secretory granules during a pulse-chase experiment with HRP in order to assess their relationship with lysosomes containing secretory granule cores. These structures (crinophagic or multigranular bodies) were previously shown to be a site of insulin degradation (Orci et al., J cell biol 98 (1984) 222) [4]. After a 15-min pulse of peroxidase, the number and volume density of HRP-labelled secretory granules decreased over an 85-min chase period, during which the number and volume density of multigranular bodies labelled with HRP was significantly increased. At both time points, the surface density of HRP-labelled Golgi elements was very small compared with that of unlabelled ones. By autoradiography after a 5-min pulse of [3H]leucine and a 55-min chase, followed by a 15-min pulse of HRP and a 85-min chase, we could show that the majority of HRP-containing secretory granules were not radioactively labelled granules. These results suggest that: The low degree of HRP labelling of the Golgi makes it unlikely that secretory granules derive their HRP by budding from HRP-labelled cisternae. HRP-labelled SGs are preferentially transferred to MGBs (which become HRP-labelled) for prospective degradation. HRP labelling does not involve newly-formed mature secretory granules.  相似文献   

4.
Prohormones are directed from the trans-Golgi network to secretory granules of the regulated secretory pathway. It has further been proposed that prohormone conversion by endoproteolysis may be necessary for subsequent retention of peptides in granules and to prevent their release by the so-called "constitutive-like" pathway. To address this directly, mutant human proinsulin (Arg/Gly(32):Lys/Thr(64)), which cannot be cleaved by conversion endoproteases, was expressed in primary rat islet cells by recombinant adenovirus. The handling of the mutant proinsulin was compared with that of wild-type human proinsulin. Infected islet cells were pulse labeled and both basal and stimulated secretion of radiolabeled products followed during a chase. Labeled products were quantified by high-performance liquid chromatography. As expected, the mutant proinsulin was not converted at any time. Basal (constitutive and constitutive-like) secretion was higher for the mutant proinsulin than for wild-type proinsulin/insulin, but amounted to <1% even during a prolonged (6-h) period of basal chase. There was no difference in stimulated (regulated) secretion of mutant and wild-type proinsulin/insulin at any time. Thus, in primary islet cells, unprocessed (mutant) proinsulin is sorted to the regulated pathway and then retained in secretory granules as efficiently as fully processed insulin.  相似文献   

5.
AtT20 (pituitary corticotroph) cells were transfected with either the native or a mutant [AspB10]rat insulin II gene, using a plasmid containing the insulin gene and a neomycin resistance gene under the control of independent constitutive promoters. The cellular immunoreactive insulin (IRI) content ranged from 0.8-440 ng/10(6) cells, with the highest value similar to that found for a rat insulinoma cell line (RIN) and corresponding to approximately 1% that of native pancreatic B-cells. There was a direct correlation between insulin mRNA levels and IRI content and no correlation between mRNA levels and rat insulin II gene copy number. Furthermore, in some lines the insulin II transgene was lost even though the gene encoding neomycin resistance was retained. IRI release was stimulated up to 4-fold by isobutylmethylxanthine in all lines transfected with the native rat insulin II gene, and HPLC analysis showed most IRI as fully processed insulin, with less than 5% as proinsulin. These cells, thus, directed most proinsulin to secretory granules for conversion and regulated release regardless of the absolute amount of IRI expressed. One of the lines transfected with the AspB10 mutant gene (line AA9) released nearly 50% of IRI as proinsulin under basal conditions, with stimulation of insulin, but not proinsulin, release by isobutylmethylxanthine. This confirmed our previous finding of partial diversion of this mutant proinsulin from the regulated to the constitutive pathway. A second line (IC6) expressing the same mutant gene at much higher levels appeared to direct all mutant proinsulin to the regulated pathway, suggesting that for this particular mutant proinsulin, the secretory pathway employed by the transfected cells can be affected by the amount of proinsulin synthesized.  相似文献   

6.
The biosynthesis of a component SGM 110, specifically localized to the membrane of insulin secretory granules, was studied in rat insulinoma cells and in normal islets of Langerhans. Cells or islets were labelled with [35S]methionine or [3H]mannose and SGM 110 was immunoprecipitated by using a monoclonal antibody. Pulse-chase experiments demonstrated that the nascent polypeptide was cotranslationally glycosylated to form a 97,000 Da peptide which in turn was processed to the mature 110,000 Da form. A 50,000 Da form detected by immunoblotting with the same antibody was not conspicuously labelled even after a 20 h chase incubation, suggesting that it represented late processing of SGM 110 in lysosomes. With insulinoma cells, an increase in medium glucose concentration from 3 mM to 20 mM was without effect on the secretion of insulin or on the biosynthesis of (pro)insulin or SGM 110. In normal islets, however, 20 mM-glucose produced a 17-fold increase in (pro)insulin biosynthesis and a 13-fold increase in SGM 110 biosynthesis, compared with only a 2-fold increase in total protein synthesis, as judged by incorporation of [35S]methionine during a 1 h incubation. The effect of glucose on both (pro)insulin and SGM 110 biosynthesis was blocked by the addition of mannoheptulose, but not by the removal of extracellular calcium, both of which conditions inhibit insulin secretion. In contrast tolbutamide, an agent which stimulates insulin secretion, did not enhance the biosynthesis of (pro)insulin or SGM 110. It is concluded that at least one protein component of the insulin secretory granule membrane is synthesized co-ordinately with proinsulin and is subject to similar regulatory mechanisms. Factors which acutely control insulin secretion may also control granule biogenesis, although the two processes are not coupled in an obligatory fashion.  相似文献   

7.
In the beta-cells of pancreatic islets, insulin is stored as the predominant protein within storage granules that undergo regulated exocytosis in response to glucose. By pulse-chase analysis of radiolabeled protein condensation in beta-cells, the formation of insoluble aggregates of regulated secretory protein lags behind the conversion of proinsulin to insulin. Condensation occurs within immature granules (IGs), accounting for passive protein sorting as demonstrated by constitutive-like secretion of newly synthesized C- peptide in stoichiometric excess of insulin (Kuliawat, R., and P. Arvan. J. Cell Biol. 1992. 118:521-529). Experimental manipulation of condensation conditions in vivo reveals a direct relationship between sorting of regulated secretory protein and polymer assembly within IGs. By contrast, entry from the trans-Golgi network into IGs does not appear especially selective for regulated secretory proteins. Specifically, in normal islets, lysosomal enzyme precursors enter the stimulus-dependent secretory pathway with comparable efficiency to that of proinsulin. However, within 2 h after synthesis (the same period during which proinsulin processing occurs), newly synthesized hydrolases are fairly efficiently relocated out of the stimulus- dependent pathway. In tunicamycin-treated islets, while entry of new lysosomal enzymes into the regulated secretory pathway continues unperturbed, exit of nonglycosylated hydrolases from this pathway does not occur. Consequently, the ultimate targeting of nonglycosylated hydrolases in beta-cells is to storage granules rather than lysosomes. These results implicate a post-Golgi mechanism for the active removal of lysosomal hydrolases away from condensed granule contents during the storage process for regulated secretory proteins.  相似文献   

8.
Synthesis and processing of radiolabelled rat insulin I and II were studied by pulse-labelling freshly isolated rat islets with [3H]leucine and chasing in 2 mM glucose for up to 270 min (which minimized insulin secretion, less than 1%/h). Islet samples were taken during the chase period and analyzed for their rat insulin I and II content by high-performance liquid chromatography. Prior to 60 min chase rat insulin I accounted for greater than 85% of the radiolabelled insulin present. With longer periods of chase, the relative percentage of rat insulin II progressively increased so that by completion of proinsulin to insulin processing the two labelled rat insulins were present in the same proportion as the relative immunoreactive content, approx. 60:40% insulin I/insulin II. Thus, although islets synthesize the two insulins in proportion to their relative immunoreactive content, rat insulin I and II are processed with different kinetics.  相似文献   

9.
The conversion of proglucagon and proinsulin by secretory granules isolated from both prelabeled and unlabeled anglerfish islets was investigated. Either granules isolated from tissue labeled with [3H]tryptophan and [14C]isoleucine or [35S]cysteine, or lysed granules from unlabeled tissue to which exogenously labeled prohormones had been added were incubated under various conditions. Acetic acid extracts of these granule preparations were analyzed for prohormone and hormone content by gel filtration. Both prelabeled and lysed, unlabeled secretory granules converted radiolabeled precursor peptides (Mr 8,000- 15,000) to labeled insulin and glucagon. The accuracy of the cleavage process was established by demonstrating comigration of products obtained from in vitro cleavage with insulin and glucagon extracted from intact islets using electrophoresis and high-pressure liquid chromatography (HPLC). The pH optimum for granule-mediated conversion was found to be in the range of pH 4.5-5.5. Conversion of both proglucagon and proinsulin by secretory granules was significantly inhibited in the presence of antipain, leupeptin, p- chloromercuribenzoate (PCMB) or dithiodipyridine (DDP) but not chloroquine, diisopropyl fluorophosphate, EDTA, p-nitrophenyl guanidinobenzoate, soybean trypsin inhibitor, or N-p-tosyl-L-lysine chloromethyl ketone HCl. The inhibitory action of PCMB and DDP was reversed in the presence of dithiothreitol. Both membranous and soluble components of the secretory granules possessed significant converting activity. HPLC and electrophoretic analysis of cleavage products demonstrated that the converting activities of the membranous and soluble components were indistinguishable. The amount of inhibition of proinsulin and proglucagon conversion caused by 600 micrograms/ml porcine proinsulin was significantly lower than that caused by the same concentration of unlabeled anglerfish precursor peptides. These results indicate that the proinsulin and proglucagon converting enzyme(s) in the anglerfish pancreatic islet is a unique intracellular thiol proteinase(s) that may be granule membrane-associated and may require the presence of prohormone sequences in addition to the dibasic residues at cleavage sites for substrate recognition and/or binding.  相似文献   

10.
The direct identification of the intracellular site where proinsulin is proteolytically processed into insulin has been achieved by immunocytochemistry using an insulin-specific monoclonal antibody. Insulin immunoreactivity is absent from the Golgi stack of pancreatic B-cells and first becomes detectable in clathrin-coated secretory vesicles released from the trans Golgi pole. Clathrin-coated secretory vesicles transform into mature noncoated secretory granules which contain the highest concentration of insulin immunoreactive sites. Maturation of clathrin-coated secretory vesicles is accompanied by a progressive acidification of the vesicular milieu, as evidenced by a cytochemical probe that accumulates in acidic compartments whereupon it can be revealed by immunocytochemistry. Thus packaging of the prohormone in secretory vesicles, and acidification of this compartment, are critical steps in the proper proteolytic maturation of insulin.  相似文献   

11.
The phospho-oligosaccharide (POS), presumed to act at the postreceptor level as the insulin second messenger, was recently reported to inhibit glucose-stimulated insulin release from rat pancreatic islets. In the present study, POS was also found to inhibit glucose-stimulated proinsulin biosynthesis and conversion in rat islets. By comparison with prior findings on the effects of both exogenous insulin and anti-insulin serum upon proinsulin synthesis, these results argue against the view that insulin would normally exert a negative feedback control upon the biosynthetic and secretory activities of islet B-cells.  相似文献   

12.
《The Journal of cell biology》1994,126(5):1149-1156
By quantitative immunoelectron microscopy and HPLC, we have studied the effect of disrupting pH gradients, by ammonium chloride, on proinsulin conversion in the insulin-producing B-cells of the islets of langerhans. Proinsulin content and pH in single secretory vesicles were measured on consecutive serial sections immunostained alternately with anti-proinsulin or anti-dinitrophenol (to reveal the pH-sensitive probe DAMP) antibodies. Radioactivity labeled proinsulin, proinsulin cleavage intermediates, and insulin were quantitated by HPLC analysis of extracts of islets treated in the same conditions. Cleavage at the C- peptide/A-chain junction is significantly less sensitive to pH gradient disruption than that of the B-chain/C-peptide junction, but the range of pH and proinsulin content in individual vesicles indicate that both cleavages occur in the same vesicle released from the TGN.  相似文献   

13.
At physiological glucose concentrations, isolated pancreatic islets release a minor portion of their newly synthesized insulin and precursors in a phase of secretion which is largely complete by 4 h of chase. Discharge during this period can be amplified by secretagogues, yet is not abolished by conditions which fully suppress regulated release from dense core secretory granules. The ability to stimulate the secretion and the biochemical profile of released proinsulin-related peptides indicate that secretion during this period originates from immature granules. The stoichiometry of release of labeled C-peptide:insulin during this phase is 1:1 at high glucose concentrations. However, at physiologic or low concentrations, C-peptide is released in molar excess of insulin as if the exocytotic vesicles carrying this secretion were budding from a post-Golgi compartment in which the lumen was composed of condensing insulin and soluble C-peptide. These findings can be explained by a model for regulated secretory protein traffic in which direct exocytosis of young granules is stimulated by higher glucose concentrations and vesicle budding from immature granules occurs at lower concentrations. Thus, insulin targeting from immature granules exhibits both regulated and constitutive-like characteristics.  相似文献   

14.
The biological function of the connecting peptide (C-peptide) of proinsulin is unknown. Comparison of all known C-peptide sequences reveals the presence of a highly conserved peptide sequence, Glu/Asp-X-Glu/Asp (X being a hydrophobic amino acid), adjacent to the Arg-Arg doublet at the B chain/C-peptide junction. Furthermore, the next amino acid in the C-peptide sequence is also acidic in many animal species. To test the possible involvement of this hydrophilic domain in insulin biosynthesis, we constructed a mutant of the rat proinsulin II gene lacking the first four amino acids of the C-peptide and expressed either the normal (INS) on the mutated (INSDEL) genes in the AtT20 pituitary corticotroph cell line. In both cases immunoreactive insulin (IRI) was stored by the cells and released upon stimulation by cAMP. In the INS expressing cells, the majority of IRI, whether stored or released in response to a secretagogue, was mature insulin. By contrast, most of the stored and releasable IRI in the INSDEL expressing cells appeared to be (mutant) proinsulin or conversion intermediate with little detectable native insulin. Release of the mutant proinsulin and/or conversion intermediates was stimulated by cAMP. These results suggest that the mutant proinsulin was appropriately targeted to secretory granules and released predominantly via the regulated pathway, but that the C-peptide deletion prevented its conversion to native insulin.  相似文献   

15.
Inosine, guanosine and adenosine strongly stimulated proinsulin biosynthesis and insulin secretion in isolated mouse pancreatic islets. None of the purine ribonucleosides stimulated insulin secretion in rat islets, although as reported [jain & Logothetopoulos (1977) Endocrinilogy 100, 923-927] inosine and guanosine, but no adenosine, were potent stimulants of proinsulin biosynthesis in this species. The purine bases had no effect in either species. D-Ribose, which enhanced proinsulin biosynthesis at 0.3 and 0.6 mM but not at 5mM in rat pancreatic islets [jain & Logothetopoulos (1977) Endocrinology 100, 923-927], produced no secretory signals in rat islets and was without any effect on proinsulin biosynthesis and insulin secretion in mouse islets. The rates of oxidation of 14C-labelled purine ribonucleosides and D-ribose in islets of the two species correlated well with their effectiveness as inducers of insulin secretion and proinsulin biosynthesis. Specific inhibitors of purine ribonucleoside phosphorylase, adenosine deaminiase and of purine ribonucleoside transport suppressed the stimulatory effects of nucleosides in pancreatic islets without altering the effect of D-glucose. The same inhibitors also markedly diminished the oxidation rats of the labelled purine ribonucleosides. The experiments clearly indicate that porinsulin biosynthesis and insulin secretion are modulated through metabolic signals and not through interactions of intact substrate molecules with cell receptors.  相似文献   

16.
Direct identification of prohormone conversion site in insulin-secreting cells   总被引:44,自引:0,他引:44  
We have localized proinsulin in B cells of human and rat pancreatic islets, using a proinsulin-specific monoclonal antibody revealed by immunocytochemistry. Proinsulin is abundant in Golgi stacks and clathrin-coated secretory granules. It rapidly disappears from these compartments when protein synthesis is inhibited. Depletion of ATP stores prevents movement of proinsulin from the Golgi stacks to the secretory granules; under these conditions, the prohormone in preformed coated granules is converted to insulin, whereas that bound to the Golgi complex is not. Non-coated granules show a low level of proinsulin reactivity under all incubation protocols. These findings provide direct evidence that coated secretory granules are the major, if not the only, cellular site of proinsulin to insulin conversion. They also suggest that the Golgi stack is not involved in conversion, and that intercisternal transport and coated granule formation are hitherto unrecognized energy-requiring steps that precede conversion.  相似文献   

17.
The C-peptide links the insulin A and B chains in proinsulin, providing thereby a means to promote their efficient folding and assembly in the endoplasmic reticulum during insulin biosynthesis. It then facilitates the intracellular transport, sorting, and proteolytic processing of proinsulin into biologically active insulin in the maturing secretory granules of the β cells. These manifold functions impose significant constraints on the C-peptide structure that are conserved in evolution. After cleavage of proinsulin, the intact C-peptide is stored with insulin in the soluble phase of the secretory granules and is subsequently released in equimolar amounts with insulin, providing a useful independent indicator of insulin secretion. This brief review highlights many aspects of its roles in biosynthesis, as a prelude to consideration of its possible additional role(s) as a physiologically active peptide after its release with insulin into the circulation in vivo.  相似文献   

18.
Summary Islet amyloid peptide (or diabetes-associated peptide), the major component of pancreatic islet amyloid found in type-2 diabetes, has been identified by electronmicroscopic immunocytochemistry in pancreatic B-cells from five non-diabetic human subjects, and in islets from five type-2 diabetic patients. The greatest density of immunoreactivity for islet amyloid peptide was found in electrondense regions of some lysosomal or lipofuscin bodies. The peptide was also localised by quantification of immunogold in the secretory granules of B-cells, and was present in cytoplasmic lamellar bodies. Acid phosphatase activity was also demonstrated in these organelles. Immunoreactivity for insulin was found in some lysosomes. These results suggest that islet amyloid peptide is a constituent of normal pancreatic B-cells, and accumulates in lipofuscin bodies where it is presumably partially degraded. In islets from type-2 diabetic subjects, amyloid fibrils and lipofuscin bodies in B-cells showed immunoreactivity for the amyloid peptide. Abnormal processing of the peptide within B-cells could lead to the formation of islet amyloid in type-2 diabetes.  相似文献   

19.
Insulin secretion from pancreatic β cells is dependent on maturation and acidification of the secretory granule, processes necessary for prohormone convertase cleavage of proinsulin. Previous studies in isolated β cells revealed that acidification may be dependent on the granule membrane chloride channel ClC-3, in a step permissive for a regulated secretory response. In this study, immuno-EM of β cells revealed colocalization of ClC-3 and insulin on secretory granules. Clcn3−/− mice as well as isolated islets demonstrate impaired insulin secretion; Clcn3−/− β cells are defective in regulated insulin exocytosis and granular acidification. Increased amounts of proinsulin were found in the majority of secretory granules in the Clcn3−/− mice, while in Clcn3+/+ cells, proinsulin was confined to the immature secretory granules. These results demonstrate that in pancreatic β cells, chloride channels, specifically ClC-3, are localized on insulin granules and play a role in insulin processing as well as insulin secretion through regulation of granular acidification.  相似文献   

20.
For insulin synthesis, the proinsulin precursor is translated at the endoplasmic reticulum (ER), folds to include its three native disulfide bonds, and is exported to secretory granules for processing and secretion. Protein disulfide isomerase (PDI) has long been assumed to assist proinsulin in this process. Herein we have examined the effect of PDI knockdown (PDI-KD) in β-cells. The data establish that upon PDI-KD, oxidation of proinsulin to form native disulfide bonds is unimpaired and in fact enhanced. This is accompanied by improved proinsulin exit from the ER and increased total insulin secretion, with no evidence of ER stress. We provide evidence for direct physical interaction between PDI and proinsulin in the ER of pancreatic β-cells, in a manner requiring the catalytic activity of PDI. In β-cells after PDI-KD, enhanced export is selective for proinsulin over other secretory proteins, but the same effect is observed for recombinant proinsulin trafficking upon PDI-KD in heterologous cells. We hypothesize that PDI exhibits unfoldase activity for proinsulin, increasing retention of proinsulin within the ER of pancreatic β-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号