首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unicellular dinoflagellate algae are among the best examples of organisms that exhibit biological clocks. This study examined the effect of light regime on rhythmicity of motility in the symbiotic dinoflagellate Symbiodinium sp., freshly isolated from the soft coral Heteroxenia fuscescens (Ehrenberg). Freshly isolated algal cells, placed under a 12-h L:12-h D cycle, exhibited motility with a diel rhythm. This motility occurred only during the period of illumination and lasted 8-9 h, with a peak at 2.5-4 h after lights on. Algal cells placed in an inverted light regime inverted their motility pattern. The response to the L/D regime was very precise, and even a 1-h shift backward or forward affected initiation of motility and time of its maximal peak. When placed in either constant light or dark, algal motility ceased until the L/D cycle was restored. These findings suggest that the rhythm is entrained by light cues and is not due to an endogenous circadian rhythm. Further, we provide evidence that the presence of juvenile hosts does not affect the algal motility pattern. These results offer the first evidence for the lack of impact by the host on rhythmicity of motility of free-living algal cells. The motility pattern found in freshly isolated algae may indicate the presence of light-induced diel rhythmicity in yet-to-be described free-living Symbiodinium.  相似文献   

2.
Our understanding of reef corals and their fate in a changing climate is limited by our ability to monitor the diversity and abundance of the dinoflagellate endosymbionts that sustain them. This study combined two well-known methods in tandem: fluorescent in situ hybridization (FISH) for genotype-specific labeling of Symbiodinium and flow cytometry to quantify the abundance of each symbiont clade in a sample. This technique (FISH-Flow) was developed with cultured Symbiodinium representing four distinct clades (based on large subunit rDNA) and was used to distinguish and quantify these types with high efficiency and few false positives. This technique was also applied to freshly isolated symbionts of Orbicella faveolata and Orbicella annularis. Isolates from acutely bleached coral tissues had significantly lower labeling efficiency; however, isolates from healthy tissue had efficiencies comparable to cultured Symbiodinium trials. RNA degradation in bleaching samples may have interfered with labeling of cells. Nevertheless, we were able to determine that, with and without thermal stress, experimental columns of the coral O. annularis hosted a majority of clade B and B/C symbionts on the top and side of the coral column, respectively. We demonstrated that, for cultured Symbiodinium and Symbiodinium freshly isolated from healthy host tissues, the relative ratio of clades could be accurately determined for clades present at as low as 7 % relative abundance. While this method does not improve upon PCR-based techniques in identifying clades at background levels, FISH-Flow provides a high precision, flexible system for targeting, quantifying and isolating Symbiodinium genotypes of interest.  相似文献   

3.
Coral planulae settle, then metamorphose and form polyps. This study examined the morphological process of metamorphosis from planulae into primary polyps in the scleractinian corals Acropora nobilis and Acropora microphthalma, using the cnidarian neuropeptide Hym-248. These two species release eggs that do not contain Symbiodinium. The mode of acquisition of freshly isolated Symbiodinium (zooxanthellae) (FIZ) by the non-symbiotic polyp was also examined. Non-Hym-248 treated swimming Acropora planulae did not develop blastopore, mesenteries or coelenteron until the induction of metamorphosis 16 days after fertilization. The oral pore was formed by invagination of the epidermal layer after formation of the coelenteron in metamorphosing polyps. At 3 days after settlement and metamorphosis, primary polyps exposed to FIZ established symbioses with the Symbiodinium. Two–four days after exposure to FIZ, the distribution of Symbiodinium was limited to the gastrodermis of the pharynx and basal part of the polyps. Eight–ten days after exposure to FIZ, Symbiodinium were present in gastrodermal cells throughout the polyps.  相似文献   

4.
Biological clocks are self-sustained endogenous timers that enable organisms (from cyanobacteria to humans) to anticipate daily environmental rhythms, and adjust their physiology and behaviour accordingly. Symbiotic corals play a central role in the creation of biologically rich ecosystems based on mutualistic symbioses between the invertebrate coral and dinoflagellate protists from the genus Symbiodinium. In this study, we experimentally establish that Symbiodinium photosynthesis, both as a free-living unicellular algae and as part of the symbiotic association with the coral Stylophora pistillata, is ‘wired’ to the circadian clock mechanism with a ‘free-run’ cycle close to 24 h. Associated photosynthetic pigments also showed rhythmicity under light/dark conditions and under constant light conditions, while the expression of the oxygen-evolving enhancer 1 gene (within photosystem II) coincided with photosynthetically evolved oxygen in Symbiodinium cultures. Thus, circadian regulation of the Symbiodinium photosynthesis is, however, complicated as being linked to the coral/host that have probably profound physiochemical influence on the intracellular environment. The temporal patterns of photosynthesis demonstrated here highlight the physiological complexity and interdependence of the algae circadian clock associated in this symbiosis and the plasticity of algae regulatory mechanisms downstream of the circadian clock.  相似文献   

5.
Intracellular lipid droplets (LDs) have been proposed to play a key role in the mutualistic endosymbiosis between reef-building corals and the dinoflagellate endosymbiont Symbiodinium spp. This study investigates and identifies LD proteins in Symbiodinium from Euphyllia glabrescens. Discontinuous Percoll gradient centrifugation was used to separate Symbiodinium cells from E. glabrescens tentacles. Furthermore, staining with a fluorescent probe, Nile red, indicated that lipids accumulated in that freshly isolated Symbiodinium cells and lipid analyses further showed polyunsaturated fatty acids (PUFA) was abundant. The stable LDs were purified from endosymbiotic Symbiodinium cells. The structural integrity of the Symbiodinium LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Protein extracts from the purified LDs revealed a major protein band with a molecular weight of 20 kDa, which was termed Symbiodinium lipid droplet protein (SLDP). Interestingly, immunological cross-recognition analysis revealed that SLDP was detected strongly by the anti-sesame and anti-cycad caleosin antibodies. It was suggested that the stable Symbiodinium LDs were sheltered by this unique structural protein and was suggested that SLDP might be homologous to caleosin to a certain extent.  相似文献   

6.
The endosymbiotic relationship between cnidarians and Symbiodinium is critical for the survival of coral reefs. In this study, we developed a protocol to rapidly and freshly separate Symbiodinium from corals and sea anemones. Furthermore, we compared these freshly‐isolated Symbiodinium with cultured Symbiodinium to investigate host and Symbiodinium interaction. Clade B Symbiodinium had higher starch content and lower lipid content than those of clades C and D in both freshly isolated and cultured forms. Clade C had the highest lipid content, particularly when associated with corals. Moreover, the coral‐associated Symbiodinium had higher protein content than did cultured and sea anemone‐associated Symbiodinium. Regarding fatty acid composition, cultured Symbiodinium and clades B, C, and D shared similar patterns, whereas sea anemone‐associated Symbiodinium had a distinct pattern compared coral‐associated Symbiodinium. Specifically, the levels of monounsaturated fatty acids were lower than those of the saturated fatty acids, and the level of polyunsaturated fatty acids (PUFAs) were the highest in all examined Symbiodinium. Furthermore, PUFAs levels were higher in coral‐associated Symbiodinium than in cultured Symbiodinium. These results altogether indicated that different Symbiodinium clades used different energy storage strategies, which might be modified by hosts.  相似文献   

7.
Coral throughout the world are under threat. To save coral via cryopreservation methods, the Symbiodinium algae that live within many coral cells must also be considered. Coral juvenile must often take up these important cells from their surrounding water and when adult coral bleach, they lose their endosymbiotic algae and will die if they are not regained. The focus of this paper was to understand some of the cryo-physiology of the endosymbiotic algae, Symbiodinium, living within three species of Hawaiian coral, Fungia scutaria, Porites compressa and Pocillopora damicornis in Kaneohe Bay, Hawaii. Although cryopreservation of algae is common, the successful cryopreservation of these important coral endosymbionts is not common, and these species are often maintained in live serial cultures within stock centers worldwide. Freshly-extracted Symbiodinium were exposed to cryobiologically appropriate physiological stresses and their viability assessed with a Pulse Amplitude Fluorometer. Stresses included sensitivity to chilling temperatures, osmotic stress, and toxic effects of various concentrations and types of cryoprotectants (i.e., dimethyl sulfoxide, propylene glycol, glycerol and methanol). To determine the water and cryoprotectant permeabilities of Symbiodinium, uptake of radio-labeled glycerol and heavy water (D2O) were measured. The three different Symbiodinium subtypes studied demonstrated remarkable similarities in their morphology, sensitivity to cryoprotectants and permeability characteristics; however, they differed greatly in their sensitivity to hypo- and hyposmotic challenges and sensitivity to chilling, suggesting that standard slow freezing cryopreservation may not work well for all Symbiodinium. An appendix describes our H2O:D2O water exchange experiments and compares the diffusionally determined permeability with the two parameter model osmotic permeability.  相似文献   

8.
We have investigated whether interactions between cell-surface macromolecules play a role in cellular recognition leading to specificity in the establishment of intracellular symbiosis between dinoflagellates and the polyp (scyphistoma) stage of the jellyfish Cassiopeia xamachana. All strains of the symbiotic dinoflagellate Symbiodinium microadriaticum were phagocytosed by the endodermal cells of the scyphistomae when presented to them as cells freshly isolated from their respective hosts. The rates of phagocytosis of such cells were high, and were directly correlated with the presence of a membrane, thought to be the host cell vacuolar membrane that surrounds the freshly isolated algae. Cultured algae lack this membrane. All cultured algae, even those that proliferate in host tissues, were phagocytosed at very low or undetectable rates. Freshly isolated algae treated with reagents that removed the host membrane were phagocytosed at low rates. The endodermal cells of the scyphistomae of the non-symbiotic medusa Aurelia aurita also phagocytosed freshly isolated algae, but did not phagocytose cultured algae. Phagocytosis of algae and carmine particles was found to be a competitive process in scyphistomae of C. xamachana. No correlation was observed between the surface electrical charge on algae and their phagocytosis by host endodermal cells. Neither was there any correlation between phagocytosis and persistence. We conclude that the specificity in symbioses between marine invertebrates and dinoflagellates appears to be regulated by processes that occur after potential algal symbionts are phagocytosed.  相似文献   

9.
10.
Coral reefs thrive in part because of the symbiotic partnership between corals and Symbiodinium. While this partnership is one of the keys to the success of coral reef ecosystems, surprisingly little is known about many aspects of coral symbiosis, in particular the establishment and development of symbiosis in host species that acquire symbionts anew in each generation. More specifically, the point at which symbiosis is established (i.e., larva vs. juvenile) remains uncertain, as does the source of free-living Symbiodinium in the environment. In addition, the capacity of host and symbiont to form novel combinations is unknown. To explore patterns of initial association between host and symbiont, larvae of two species of Acropora were exposed to sediment collected from three locations on the Great Barrier Reef. A high proportion of larvae established symbiosis shortly after contact with sediments, and Acropora larvae were promiscuous, taking up multiple types of Symbiodinium. The Symbiodinium types acquired from the sediments reflected the symbiont assemblage within a wide range of cnidarian hosts at each of the three sites, suggesting potential regional differences in the free-living Symbiodinium assemblage. Coral larvae clearly have the capacity to take up Symbiodinium prior to settlement, and sediment is a likely source. Promiscuous larvae allow species to associate with Symbiodinium appropriate for potentially novel environments that may be experienced following dispersal.  相似文献   

11.
Coral bleaching represents a complex physiological process that is affected not only by environmental conditions but by the dynamic internal cellular biology of symbiotic dinoflagellates (Symbiodinium spp.) and their cnidarian hosts. Recently, nitric oxide (NO) has emerged as a key molecule involved with the expulsion of Symbiodinium from host cnidarian cells. However, the site of production remains under debate, and the corresponding signaling pathways within and between host and endosymbiont remain elusive. In this study, using freshly isolated Symbiodinium from the soft coral Eunicea fusca, I demonstrate that thermally induced stress causes an upregulation in Symbiodinium heat shock protein 90 (Hsp90). In turn, Hsp90 shows a concomitant ability to enhance the activity of a constitutively expressed isoform of NO synthase. The resulting production of NO constitutes a signaling molecule capable of inducing Symbiodinium expulsion. Using nitric oxide synthase (NOS) and Hsp90 polyclonal antibodies, thermal stress-induced Hsp90 was shown to co-immunoprecipitate with a constitutive isoform of NOS. The specific blocking of Hsp90 activity, with the Hsp90 inhibitor geldanamycin, was capable of inhibiting NO production implicating the involvement of a coordinated regulatory system. These results have strong evolutionary implications for Hsp90–NOS chaperone complexes among biological kingdoms and provide evidence for a new functional role in symbiotic associations.  相似文献   

12.
13.
Coral reef ecosystems are based on coral–zooxanthellae symbiosis. During the initiation of symbiosis, majority of corals acquire their own zooxanthellae (specifically from the dinoflagellate genus Symbiodinium) from surrounding environments. The mechanisms underlying the initial establishment of symbiosis have attracted much interest, and numerous field and laboratory experiments have been conducted to elucidate this establishment. However, it is still unclear whether the host corals selectively or randomly acquire their symbionts from surrounding environments. To address this issue, we initially compared genetic compositions of Symbiodinium within naturally settled about 2-week-old Acropora coral juveniles (recruits) and those in the adjacent seawater as the potential symbiont source. We then performed infection tests using several types of Symbiodinium culture strains and apo-symbiotic (does not have Symbiodinium cells yet) Acropora coral larvae. Our field observations indicated apparent preference toward specific Symbiodinium genotypes (A1 and D1-4) within the recruits, despite a rich abundance of other Symbiodinium in the environmental population pool. Laboratory experiments were in accordance with this field observation: Symbiodinium strains of type A1 and D1-4 showed higher infection rates for Acropora larvae than other genotype strains, even when supplied at lower cell densities. Subsequent attraction tests revealed that three Symbiodinium strains were attracted toward Acropora larvae, and within them, only A1 and D1-4 strains were acquired by the larvae. Another three strains did not intrinsically approach to the larvae. These findings suggest the initial establishment of corals–Symbiodinium symbiosis is not random, and the infection mechanism appeared to comprise two steps: initial attraction step and subsequent selective uptake by the coral.  相似文献   

14.
On coral reefs, Symbiodinium spp. are found in most cnidarian species, but reside in only a small number of sponge species. Of the sponges that do harbor Symbiodinium, most are found in the family Clionaidae, which represents a minor fraction of the poriferan diversity on a reef. Our goal was to determine whether Symbiodinium can be taken up by sponge hosts that do not typically harbor these algal symbionts, and then to follow the fate of any Symbiodinium that enter the intracellular space. We used the filter-feeding capacity of sponges to initiate intracellular interactions between sponge-specialist clade G Symbiodinium and six sponge species that do not associate with Symbiodinium. Using a pulse-chase experimental design, we determined that all of the species we examined captured Symbiodinium, and undamaged intracellular algae were found up to 1 h after inoculation. In a longer-term experiment, Symbiodinium populations in Amphimedon erina persisted in sponge cells for at least 5 d post-inoculation. While no evidence of digestion was detected, the population decreased exponentially after inoculation. We contrast these data with the characteristics of symbiont acquisition and establishment in Cliona varians, which normally harbors Symbiodinium. Explants from experimentally derived aposymbiotic sponges were placed in the field where they acquired Symbiodinium from ambient sources (i.e., we did not inoculate them as in the pulse-chase experiments). We began to detect Symbiodinium cells in C. varians after 12 d, and the algal population increased exponentially until densities approached those typically found in this host (after ~128 d). We discuss the implications of this work in light of growing interest in the evolution of specificity between hosts and symbionts, and the fundamental and realized niche of Symbiodinium.  相似文献   

15.
Intracellular pH (pHi) is likely to play a key role in maintaining the functional success of cnidarian–dinoflagellate symbiosis, yet until now the pHi of the symbiotic dinoflagellates (genus Symbiodinium) has never been quantified. Flow cytometry was used in conjunction with the ratiometric fluorescent dye BCECF to monitor changes in pHi over a daily light/dark cycle. The pHi of Symbiodinium type B1 freshly isolated from the model sea anemone Aiptasia pulchella was 7.25 ± 0.01 (mean ± SE) in the light and 7.10 ± 0.02 in the dark. A comparable effect of irradiance was seen across a variety of cultured Symbiodinium genotypes (types A1, B1, E1, E2, F1, and F5) which varied between pHi 7.21–7.39 in the light and 7.06–7.14 in the dark. Of note, there was a significant genotypic difference in pHi, irrespective of irradiance.  相似文献   

16.
In adult cnidarians, symbiotic dinoflagellate Symbiodinium are usually located in the gastrodermis. However, the onset of this endosymbiotic association and its regulation during larval development are unclear. This study examined the distribution of the Symbiodinium population in tissue layers of planula larvae released from the stony coral Euphyllia glabrescens. Symbiodinium were redistributed from the epidermis to the gastrodermis, at a rate that was fastest during early planulation and then decreased prior to metamorphosis. This process indicates that the endosymbiotic activity of coral tissues is developmentally regulated. During the early larval stage, both the epidermis and gastrodermis contained Symbiodinium; then, as the larvae developed toward metamorphosis, the numbers in the epidermis gradually diminished until they were only found in the gastrodermis. The mechanism of redistribution remains unknown, but may be due to a direct translocation and/or change in the proliferation of symbionts in different tissue layers.  相似文献   

17.
The genus Symbiodinium is the commonly observed symbiotic dinoflagellate (zooxanthellae) that forms mutual associations with various marine invertebrates. Numerous studies have revealed that the genus is comprised of a group of diverse taxa, and information on the phylogenetic relationships among the genus’ members is increasing. In this study, small subunit (SSU) ribosomal RNA (ssrRNA) gene sequences were determined for 15 more Symbiodinium strains from 12 relatively unstudied host taxa (Indo-Pacific tridacnids, cardiids, sponge, and soft coral), 1 hitherto unreported free-living Symbiodinium strain, and 4 other Symbiodinium strains from four other host taxa (Indo-Pacific zoanthid, foraminifer, jellyfish, and mid-Pacific hard coral). Their respective phylogenetic positions were inferred, and strains that are either closely related to or distinct from previously reported Symbiodinium taxa were revealed. The cultured Symbiodinium strains isolated from individuals of six species of tridacnids and three species of cardiids all had identical ssrRNA gene sequences, are closely related to S. microadriaticum Freudenthal, and are indistinguishable from the RFLP Type A strain previously reported. However, the ssrRNA gene sequences of clam symbionts that were obtained via gene cloning were different from those of the cultured isolates and represent strains that are close to the RFLP Type C strains. The Symbiodinium-like dinoflagellate from the Indo-Pacific sponge Haliclona koremella De Laubenfels is distinct from any of the Symbiodinium taxa studied and may be similar to the symbiont previously isolated from the stony coral Montipora patula Quelch. The isolates from the soft coral Sarcophyton glaucum Quoy et Gaimard and from the zoanthid Zoanthus sp. are both very closely related to S. pilosum Trench et Blank. The free-living Symbiodinium isolate is very closely related to the symbiont isolated from the Indo-Pacific foraminifer Amphisorus hemprichii Ehrenberg, which in turn is distinct from the Red Sea strain isolated from a similar host. Theisolate from Cassiopeia sp. is different from S. microadriaticum F., the type species harbored by Cassiopeia xamachana Bigelow, and is instead very closely related to S. pulchrorum Trench isolated from a sea anemone. The symbiont from the stony coral M. verrucosa Lamarck is a sister taxon to the symbionts isolated from the foraminifera Marginopora kudakajimensis Gudmundsson and Sorites orbiculus Forskål. These data suggest that polymorphic symbioses extend from cnidarians to some bivalve, foraminifer, and jellyfish host species.  相似文献   

18.
As an approach to investigate the impact of solar radiation on an alga–invertebrate symbiosis, the genetic variation and photosynthetic responses of the dinoflagellate algal symbiosis in an intertidal and a subtidal population of the sea anemone Anemonia viridis were explored. Allozyme analysis of the anemones indicated that the two populations were genetically very similar, with a Nei''s index value of genetic identity (I) of 0.998. The algae in all animals examined were identified as Symbiodinium of clade a by PCR-RFLP analysis of the small subunit ribosomal RNA gene. The symbiosis in the two populations did not differ significantly in algal population density, chlorophyll a content per algal cell or any photosynthetic parameter obtained from studies of the relationship between photosynthesis and irradiance. We conclude that there is not necessarily genetic variation or photosynthetic plasticity of the symbiotic algae in Anemonia viridis inhabiting environments characterized by the different solar irradiances of the subtidal and intertidal habitats.  相似文献   

19.
Many corals which engage in symbioses with dinoflagellates from the genus Symbiodinium (zooxanthellae) produce offspring which initially lack zooxanthellae. These species must choose their symbionts from numerous genetically distinct strains of zooxanthellae co-occurring in the environment. In most cases, symbiosis onset results in an association between a specific host coral and a specific strain of algal symbiont. This is the first study to examine host-symbiont specificity during symbiosis onset in a larval cnidarian, and the first to examine such events in a scleractinian of any life stage. We infected planula larvae of the solitary Hawaiian scleractinian Fungia scutaria with both homologous zooxanthellae, freshly isolated from F. scutaria adults, and heterologous zooxanthellae, isolated from Montipora verrucosa, Porites compressa, and Pocillopora damicornis, three species of scleractinians which co-occur with F. scutaria. We found that homologous zooxanthellae were better able to establish symbioses with larval hosts than were heterologous isolates, by two separate measures: percent of a larval population infected, and densities of zooxanthellae per larva. We also measured algal densities in larvae over a 4-day period until the onset of settlement and metamorphosis. We found no changes in zooxanthella population densities, regardless of zooxanthella type or the light environment in which they were incubated. Strong infection of host larvae with homologous algae compared to heterologous algae suggests that there is a specificity process which occurs sometime during the early stages of infection between the partners, and which results in the establishment of a specific symbiosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号