首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
旱雀麦(Bromus tectorum)在世界上广泛分布,但在北美却是一种入侵能力较强的物种,对当地的植物群落结构组成和生态系统功能产生重要影响.本文从旱雀麦的生境和扩散路径、本身的生物学特性、其与新栖息地土著物种之间的相互作用、新栖息地的环境变化对旱雀麦的影响等方面综述了近年来关于旱雀麦入侵机制的研究进展.研究表明,影响旱雀麦入侵的因素是多样的,阐明旱雀麦的入侵机制对于推动生态学的理论发展和控制旱雀麦的大规模入侵具有重要意义.  相似文献   

2.
3.
The invasive grasses Bromus rubens and Bromus tectorum are responsible for widespread damage to semiarid biomes of western North America. Bromus. tectorum dominates higher and more northern landscapes than its sister species B. rubens, which is a severe invader in the Mojave desert region of the American Southwest. To assess climate thresholds controlling their distinct geographic ranges, we evaluated the winter cold tolerance of B. tectorum and B. rubens. Freezing tolerance thresholds were determined using electrolyte leakage and whole‐plant mortality. The responses of the two species to winter cold and artificial freezing treatments were similar in 2007–2008 and 2009–2010. When grown at minimum temperatures of 10 °C, plants of both species had cold tolerance thresholds near ?10 °C, while plants acclimated to a daily minimum of ?10 to ?30 °C survived temperatures down to ?31 °C. In the winter of 2010–2011, a sudden severe cold event on December 9, 2010 killed all B. rubens populations, while B. tectorum was not harmed; all tested plants were 7–8 weeks old. Controlled acclimation experiments demonstrated that 8‐week‐old plants of B. rubens had a slower acclimation rate to subzero temperatures than B. tectorum and could not survive a rapid temperature drop from 1 to ?14 °C. Four‐month‐old B. rubens populations were as cold tolerant as B. tectorum. Our results show that severe and sudden freeze events in late autumn can kill young plants of B. rubens but not B. tectorum. Such events could exclude B. rubens from the relatively cold, Intermountain steppe biome of western North America where B. tectorum predominates.  相似文献   

4.
Boose D  Harrison S  Clement S  Meyer S 《Mycologia》2011,103(1):85-93
We examined genetic variation in the ascomycete pathogen Pyrenophora semeniperda cultured from seeds of the invasive grass Bromus tectorum in the Intermountain West of North America. We sequenced the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA genome in 417 monoconidial cultures collected from 20 sites in Washington, Idaho, Utah and Colorado, USA. ITS sequence diversity was surprisingly high; 12 unique haplotypes were identified, averaging 1.3% pairwise sequence divergence. All sites had at least two haplotypes present, and three sites had seven or more. One haplotype composed 60% of the isolates and occurred at all 20 locations; the remaining haplotypes generally occurred at low frequencies within sites but at multiple sites throughout the region. Sites in Washington and Idaho were more diverse than those in Utah and Colorado, averaging two more haplotypes and 67% more pairwise differences among haplotypes at a site. Analysis of molecular variance (AMOVA) indicated that more than 80% of the genetic variation was found within sampling locations, while 7-11% of the variation can be attributed to differences between northern (Washington and Idaho) and southern (Utah and Colorado) populations. The wide distribution of even uncommon haplotypes among sampling sites and weak correlations between genetic and geographic distances among populations (< 0.2) suggested that these populations recently were established from a common source. We hypothesize that the strains of P. semeniperda infecting B. tectorum in western North America probably arrived with the invasive grass from its native Eurasian range.  相似文献   

5.
Ecological genetics of seed germination regulation in Bromus tectorum L.   总被引:1,自引:0,他引:1  
Regulation of seed germination phenology is an important aspect of the life history strategy of invading annual plant species. In the obligately selfing winter annual grass Bromus tectorum, seeds are at least conditionally dormant at dispersal in early summer and lose dormancy through dry-afterripening. Patterns of germination response at dispersal vary among populations and sometimes across years within populations. To assess the relative contribution of genotype and maturation environment to this variation, we grew progeny of ten parental lines from each of six contrasting populations in a common greenhouse environment. We then tested the germination responses of recently harvested seeds of the putative full-sib progeny at five incubation temperatures. Significant germination response differences among populations were observed in greenhouse cultivation, and major differences among full-sib families were evident for some populations and traits. Among-population variation accounted for over 90% of the variance in each trait, while within-family variance accounted for 1% or less. Germination responses of greenhouse-grown progeny were positively correlated with the responses of wild-collected seeds, but there was a tendency for lowered dormancy at higher incubation temperatures. This tendency was more marked in populations from cold desert, foothill, and plains habitats, suggesting a genotype-maturation environment interaction. Differences among populations in the amount of among-family variance were more evident at lower incubation temperatures, while among-family variance was more uniformly low at summer incubation temperatures. Populations from predictable extreme environments (subalpine meadow and warm desert margin) showed significantly less variation among families than populations from less predictable cold desert, foothill, and plains environments. Low among-family variance was not specifically associated with small population size or marginality of habitat, as small marginal populations from unpredictable environments showed variance as high as that of large populations. In populations with high among-family variance for germination traits, germination responses tended to be correlated across incubation temperatures, making it possible to characterize families in terms of their general dormancy status. The results indicate that seed germination regulation in this species is probably under strong genetic control, and that habitats with temporally varying selection are occupied by populations that tend to be more polymorphic in terms of their germination response patterns. Received: 19 May 1998 / Accepted: 27 January 1999  相似文献   

6.
The probability that a seed will germinate depends on factors associated with genotype, maturation environment, post-maturation history, and germination environment. In this study, we examined the interaction among these sets of factors for 18 inbred lines from six populations of Bromus tectorum L., a winter annual grass that is an important weed in the semi-arid western United States. Seeds of this species are at least conditionally dormant at dispersal and become germinable through dry-afterripening under summer conditions. Populations and inbred lines of B. tectorum possess contrasting dormancy patterns. Seeds of each inbred line were produced in a greenhouse under one of three levels of maturation water stress, then subjected to immediate incubation under five incubation regimes or to dry storage at 20°C for 4 weeks, 12 weeks, or 1 year. Dry-stored seeds were subsequently placed in incubation at 20/30°C. Narrow-sense heritability estimates based on parent-offspring regressions for germination percentage of recently harvested seeds at each incubation temperature were high (0.518–0.993). Germination percentage increased with increasing water stress overall, but there were strong interactions with inbred line and incubation temperature. Inbred lines whose seeds were non-dormant over the full range of incubation temperatures when produced at low maturation water stress showed reaction norms characterized by little or no change as a function of increasing stress. For inbred lines whose dormancy status varied with incubation temperature, incubation treatments where seeds exhibited either very low or very high levels of dormancy showed the least change in response to maturation water stress. Inbred lines also varied in their pattern of dormancy loss during storage at 20°C, but maturation water stress had only a minor effect on this pattern. For fully afterripened seeds (1 year in storage at 20°C), inbred line and maturation water stress effects were no longer evident, indicating that differences in genotype and maturation environment function mainly to regulate dormancy and dormancy loss in B. tectorum, rather than to mediate response patterns of non-dormant seeds.  相似文献   

7.
8.
9.
10.
Increased resource supply commonly facilitates invasion by exotic plants, raising concerns over atmospheric nitrogen (N) deposition; fast‐growing annual invaders may have exceptional abilities to outperform native perennials in response to N pulses. However, it remains unclear whether this advantage is due to growth differences or to shifts in competitive outcomes, and whether annual invaders are favored by N deposition in their introduced range over native range. We conducted an experiment to compare the growth and competitive ability of Bromus tectorum and its native perennial grasses either at three different N regimes or between China and North America. The soil used in this experiment was from mountain grasslands as a neutral growth medium. The total biomass of three natives from China and North America did not increase along the N deposition gradient. Nitrogen addition enhanced the growth of North American B. tectorum instead of Chinese B. tectorum. Nitrogen addition increased the competitive ability of B. tectorum, but had no effect on that of natives. North American B. tectorum was bigger and had greater competitive ability and root weight ratio than Chinese B. tectorum. In contrast, North American natives were less competitive than Chinese natives. There was a significantly positive correlation between the growth of B. tectorum grown alone and its competitive ability. These findings suggest that N deposition may enhance the B. tectorum invasion through disproportionally increasing the growth and maintaining inherent competitive advantages of North American B. tectorum, further increasing threats to introduced ranges. There were differences in the growth and competitive ability of B. tectorum and natives between China and North America, which explains why B. tectorum is a minor component at home and becomes a successful invader abroad.  相似文献   

11.
12.
BACKGROUND AND AIMS: Bromus tectorum (cheatgrass or downy brome) is an exotic annual grass that is dominant over large areas of former shrubland in western North America. To flower in time for seed production in early summer, B. tectorum plants generally require vernalization at winter temperatures, either as imbibed seeds or as established seedlings. METHODS: Variation in response to increasing periods of vernalization as seeds or seedlings for progeny of ten full-sib families from each of four B. tectorum populations from contrasting habitats was studied. KEY RESULTS: As vernalization was increased from 0 to 10 weeks, the proportion of plants flowering within 20 weeks increased, weeks to initiation of flowering decreased, and seed yield per plant increased, regardless of whether plants were vernalized as seeds or seedlings. Most of the variation was accounted for by differences among populations. Plants of the warm desert population flowered promptly even without vernalization, while those of the cold desert, foothill and montane populations showed incremental changes in response variables as a function of vernalization period. Populations differed in among-family variance, with the warm desert population generally showing the least variance and the cold desert population the most. Variation among populations and among families within populations decreased as vernalization period increased, whereas the non-genetic component of variance showed no such pattern. CONCLUSIONS: Variation in vernalization response was found to be adaptively significant and apparently represents the result of contrasting selection regimes on a range of founder genotypes.  相似文献   

13.
14.
In drylands of southeastern Utah, USA, the invasive exotic grass Bromus tectorum L. occurs in distinct spatial patterns suggesting soil control of ecosystem susceptibility to invasion. To improve our understanding of these patterns, we examined performance of B. tectorum in relation to additions of water, KCl, MgO, and CaO at seventeen 1600 m2 sites distributed across a calcareous soil gradient in Canyonlands National Park. Water additions resulted in a 57% increase in B. tectorum establishment. Fall establishment was significantly correlated with silt and clay content in wet plots but not in dry plots, suggesting that texture effects on B. tectorum establishment patterns may be greater in wet years than in dry years. Applications of MgO resulted in a 49% decrease in B. tectorum establishment, although MgO had no effect on whole-plot biomass at the end of the growing season. B. tectorum–soil relations were strongest during winter (December–March) when relative growth rates were negatively related to soil acid-neutralizing potential, sand and CaCO3 content, and a measure of bioavailable Mg; and positively related to silt and clay content, total N, measures of bioavailable Mn, P, and K, and a measure of magnetite indicating distributional patterns of eolian dust. As soils were persistently moist during this period, we attribute strong B. tectorum–soil patterns in winter to effects of low temperature on diffusion, microbial activity, and/or production of root exudates important for nutrient mobilization and uptake. In spring, there was a reversal in B. tectorum–soil relations such that loamy soils with higher B. tectorum densities were unfavorable for growth relative to sandy soils with higher warm-season water potentials. We conclude that resource limitations for B. tectorum in this study area shift seasonally, from water limitation of fall establishment, to nutrient limitation of winter growth, and back to water limitation of spring growth. Because study sites generally were arrayed along a hillslope gradient with downslope trends in soil vtexture and nutrient content, close B. tectorum–soil relations documented in this study indicate that a geomorphic framework is useful for understanding and predicting B. tectorum invasion patterns in dryland ecosystems of this region.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. Section Editor: T. KalaposThe U.S. Government’s right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged  相似文献   

15.
Abstract: Genetic diversity among 50 accessions of Bromus tectorum and 43 of B. sterilis from different sites of their Eurasian ranges has been studied by electrophoretic analysis of ten enzymes encoded by 18 loci. The two species proved clearly differentiated by alternate allozymes at seven isozymes. Populations of both taxa showed differentiation into eleven (B. tectorum ) and six (B. sterilis ) multilocus allozyme lineages (MLALs). The extent of interspecific allozyme divergence estimated by Manhattan distance exceeded more than three times intraspecific differentiation between the multilocus lineages. Only two MLALs in each species have wide geographical distribution from the Near East to Europe. Other MLAL5 were found each for only one or two populations and were region-specific. Most geographically marginal European populations had widespread MLALs.  相似文献   

16.
The positive effect of disturbance on plant community invasibility is one of the more consistent results in invasion ecology. It is generally attributed to a coincident increase in available resources (due to the disturbance) that allows non-resident plant species to establish (Davis MA, Grime JP Thompson K, J Ecol 88:528–534, 2000). However, most research addressing this issue has been in artificial or highly modified plant communities. Our goal in this study was to investigate the interactive effects of resource availability and plant mortality disturbance on the invasion of natural plant communities. We conducted a series of experiments that examined the response of Bromus tectorum L., a highly invasive annual grass, to experimentally created gradients of resource availability [nitrogen (N) and water] and resident plant species mortality. We found that B. tectorum biomass was co-limited by N and water. Biomass at the end of the growing season was a saturating function (i.e., increased to a maximum) of water, which determined maximum biomass, and N, which determined the rate at which maximum biomass was attained. Despite that fact that plant mortality increased N availability, it had a negative impact on invasion success. Plant mortality also decreased foliar cover, standing dead biomass, and soil cover by litter. In harsh environments, removing foliar and soil cover may increase germination and seedling stress by increasing soil temperatures and water loss. Across all treatments, B. tectorum success decreased with decreasing foliar cover and standing dead biomass. This, in combination with the strong limitation of B. tectorum biomass by water in this experiment, suggests that our plant mortality disturbance removed soil cover that may have otherwise aided B. tectorum invasion into this semi-arid plant community by reducing water stress.  相似文献   

17.
Wildfires in many western North American forests are becoming more frequent, larger, and severe, with changed seasonal patterns. In response, coniferous forest ecosystems will transition toward dominance by fire‐adapted hardwoods, shrubs, meadows, and grasslands, which may benefit some faunal communities, but not others. We describe factors that limit and promote faunal resilience to shifting wildfire regimes for terrestrial and aquatic ecosystems. We highlight the potential value of interspersed nonforest patches to terrestrial wildlife. Similarly, we review watershed thresholds and factors that control the resilience of aquatic ecosystems to wildfire, mediated by thermal changes and chemical, debris, and sediment loadings. We present a 2‐dimensional life history framework to describe temporal and spatial life history traits that species use to resist wildfire effects or to recover after wildfire disturbance at a metapopulation scale. The role of fire refuge is explored for metapopulations of species. In aquatic systems, recovery of assemblages postfire may be faster for smaller fires where unburned tributary basins or instream structures provide refuge from debris and sediment flows. We envision that more‐frequent, lower‐severity fires will favor opportunistic species and that less‐frequent high‐severity fires will favor better competitors. Along the spatial dimension, we hypothesize that fire regimes that are predictable and generate burned patches in close proximity to refuge will favor species that move to refuges and later recolonize, whereas fire regimes that tend to generate less‐severely burned patches may favor species that shelter in place. Looking beyond the trees to forest fauna, we consider mitigation options to enhance resilience and buy time for species facing a no‐analog future.  相似文献   

18.
HRGP在小麦抗寒锻炼过程中的变化及其与抗寒性的关系   总被引:8,自引:0,他引:8  
强抗寒小麦品种(R-025、中品94-19、品83-1、品83-2、品83-3、米罗诺夫808)经抗寒锻炼后,其幼苗体内的游离脯氨酸、细胞壁结合的羟脯氨酸和糖蛋白含量发生了明显的变化.游离脯氨酸含量比未经抗寒锻炼处理时增加5~32倍,细胞壁结合的羟脯氨酸含量比对照增加1.77~2.17倍,糖蛋白含量比对照增加4.68~9.72倍,而不抗寒小麦品种(中国春、冬103)增加量较小.脯氨酸积累进程各个品种间差异比较大,品83-1、品83-2积累较快,抗寒锻炼第21d时达到最高峰,而R-025在第56d达到最高峰.脯氨酸含量与小麦品种抗寒性相关不显著(相关系数为0.3462),而羟脯氨酸含量、糖蛋白含量与小麦品种抗寒性相关显著,相关系数分别为0.6491和0.7039.从小麦细胞壁纯化得到了2种伸展蛋白Extensm1和Ex-tensin2,其含量都和小麦品种抗寒性呈正相关.Extensin1是分子量为28kD、羟脯氨酸为主要成份(32mo1%)的富含羟脯氨酸糖蛋白.  相似文献   

19.
Biological invasions are a leading threat to freshwater biodiversity worldwide. A central unanswered question of invasion ecology is why some introduced populations establish while most fail. Answering this question will allow resource managers to increase the specificity and effectiveness of control efforts and policy. We studied the establishment of spiny water flea (Bythotrephes longimanus) in the United States and Canada by modeling introduction failure caused by demographic stochasticity, environmental variation, and seasonal environmental forcing. We compared predicted establishment rates with observed invasions of inland lakes in Ontario, Canada. Our findings suggest that environmental forcing can cause “windows” of invasion opportunity so that timing of introductions might be a greater determinant of population establishment than demographic stochasticity and random environmental variation. We expect this phenomenon to be exhibited by species representing a wide range of life histories. For spiny water flea in North America, a large window of invasion opportunity opens around the fourth week of May, persists through the summer, and closes with decreasing water temperatures in autumn. These results show how timing of introductions with respect to seasonally forced environmental drivers can be a key determinant of establishment success. By focusing on introductions during windows of invasion opportunity, resource managers can more effectively control invasion rates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号