首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
Plants grown in phosphorus-deficient solutions often exhibit disruption of water transport due to reduction in root hydraulic conductivity (Lpr) and enhanced ethylene production. To uncover the relationship between the reduction in Lpr and increase in ethylene production, we investigated effect of phosphorus (P) deficiency on ethylene production and Lpr in legume plants of Medicago falcata L. There was an increase in ethylene production and a reduction of Lpr of M. falcata roots when M. falcata seedlings grown in P sufficient solutions (0.5 mM H2PO42?) were transferred to P-deficient solutions (5 μM H2PO42?). Antagonists of ethylene biosynthesis, CoCl2 and aminoethoxyvinylglycine (AVG), abolished the P deficiency-induced ethylene production. Root hydraulic conductivity of M. falcata seedlings grown in P-sufficient solutions was insensitive to CoCl2 and AVG, while the two chemicals enhanced Lpr for those grown in P-deficient solutions, suggesting that P deficiency-induced decrease in Lpr can be reversed by inhibiting ethylene production. Ethylene precursor 1-amino cyclopropane-1-carboxylic acid (ACC) and ethylene donor ethephon had greater inhibitory effect on Lpr of P-sufficient seedlings than that of P-deficient seedlings. Root hydraulic conductivity of P-sufficient seedlings was more sensitive to HgCl2 than that of P-deficient seedlings. Taken together, these findings suggest that ethylene induced by P deficiency may play an important role in modulation of root hydraulic conductivity by affecting aquaporins in plants.  相似文献   

2.
Plants have developed numerous strategies to cope with phosphorus (P) deficiency resulting from low availability in soils. Evolution of ethylene and up-regulation of root secreted acid phosphatase activity are common for plants in response to P deficiency. To determine the role of ethylene in response of plants to P deficiency, we investigated the effects of ethylene precursor (1-amino cyclopropane-1-carboxylic acid, ACC) and ethylene synthesis antagonists (aminoethoxyvinylglycine AVG, cobalt, Co2+) on P concentrations in roots and shoots of Medicago falcata seedlings grown in P-sufficient (500 μM H2PO4) and P-deficient (5 μM H2PO4) solution. After transferring M. falcata seedlings from P-sufficient to P-deficient solution for 2 days, root P concentration was significantly reduced. The reduction in root P concentration was reversed by AVG and Co2+, and a similar reduction in root P concentration of seedlings exposed to P-sufficient solution was observed by ACC. Expression of high-affinity phosphate transporters (MfPT1, MfPT5) was enhanced by P-deficiency and this process was reversed by AVG and Co2+. There was a marked increase in activity of root acid phosphatase (APase) and expression of gene encoding APase (MfPAP1) under P-deficient conditions, and the increase in APAse activity and expression of MfPAP1 was inhibited by AVG and Co2+. APase activity and expression of MfPAP1 expression in seedlings grown in P-sufficient solution were enhanced by ACC. Root and shoot P concentrations were increased when organic phosphorus was added to the P-deficient solution, and the increase in P concentration was significantly inhibited by AVG and Co2+. These results indicate that ethylene plays an important role in modulation of P acquisition by possibly mobilizing organic P via up-regulating root APase activity and high-affinity phosphate transporters.  相似文献   

3.
Mediation of a plant response to malformin by ethylene   总被引:6,自引:6,他引:0       下载免费PDF全文
Malformin and ethylene stimulate abscission of the primary leaves of Phaseolus aureus Roxb. in the dark, and abscission stimulation by both compounds is inhibited by indeleacetic acid and CO2. Ethylene production by malformin-treated buds is stimulated within 4 hours. and up to 8 days, after treatment. Malformin-induced growth disturbances in P. vulgaris L. and abscission in P. aureus are considered mediated by ethylene. Although root curvatures of Zea mays L. are induced by both malformin and ethylene, and malformin is inhibited by CO2, ethylene production is not stimulated by malformin. A role of ethylene in root curvatures induced by malformin is neither proposed nor disproved.  相似文献   

4.
Experiments were performed to determine the source(s) of ethylene-causing epinasty in flooded tomato plants (Lycopersicon esculentum Mill.). Simultaneous measurements were made of ethylene synthesized by the roots and shoots of tomato plants exposed to either aerobic or anaerobic atmospheres in the root zone. When the root zone was made anaerobic by a flowing stream of N2 gas, petiole epinasty and accelerated ethylene synthesis by the shoots were observed. In soil-grown plants, ethylene synthesis by the root-soil complex increased under anaerobic conditions; but when grown in inert media under the same conditions, ethylene synthesis by roots remained constant or declined during the period of rapid epinastic growth by the petioles. Other characteristic symptoms of flooding, e.g. reduced growth and chlorosis, were also observed in plants with anaerobic roots. Pretreatment of plants with AgNO3, an inhibitor of ethylene action, completely prevented epinasty, demonstrating that ethylene is the agent responsible for waterlogging symptoms. These results indicate that deprivation of O2 to the roots is the primary effect of soil flooding, and that this is sufficient to cause increased ethylene synthesis in the shoot. The basis of the observed root-shoot communication is unknown, but root-synthesized hormones or specific ethylene-promoting factors may be involved.  相似文献   

5.
We observed no exchange between deuterated ethylene (C2D4) and the hydrogen of pea seedlings (Pisum sativum L. cv. Alaska). This suggests that bonding forces in which exchange could readily occur are not important in the physiological action of ethylene. Deuterated ethylene was just as effective as normal ethylene in inhibiting the growth of pea root sections. These results indicate that splitting carbon to hydrogen bonds did not occur during ethylene action.  相似文献   

6.
以野生型拟南芥(WT)及其生长素和乙烯不敏感型突变体(aux1-7、axr1-3、etr1-1和etr1-3)为实验材料,采用固体培养法研究了高浓度硝酸铵对根毛发育的影响,以揭示其调控根毛发育的机制。结果表明:(1)随着外源硝酸铵浓度的逐渐增加,拟南芥根毛伸长受阻,产生大量的分叉根毛。(2)高浓度硝酸铵条件下,外源活性氧或活性氧产生抑制剂二苯基氯化碘(DPI)的添加能抑制高浓度硝酸铵诱导的分叉根毛产生。(3)高浓度硝酸铵条件下,外源生长素或乙烯合成前体物质1-氨基-环丙烷-1-羧酸(ACC)处理能恢复根毛的正常生长,解除高浓度硝酸铵诱导根毛分叉现象。(4)高浓度硝酸铵条件下,外源生长素处理乙烯不敏感型突变体或ACC处理生长素不敏感型突变体均能抑制突变体分叉根毛的形成。研究表明,活性氧、生长素和乙烯都参与了高浓度硝酸铵对根毛发育的过程调控;在硝酸铵诱导的根毛分叉中生长素和乙烯存在相互作用,在缺乏生长素信号通路时,乙烯能够发挥补充作用抑制分叉根毛的产生;在缺乏乙烯信号通路时,生长素也可以弥补缺失乙烯的作用抑制根毛的分叉,但是需要更高浓度的生长素才能充分抑制分叉根毛的产生。  相似文献   

7.

Main conclusion

By integrating molecular, biochemical, and physiological data, ethylene biosynthesis in sugar beet was shown to be differentially regulated, affecting root elongation in a concentration-dependent manner. There is a close relation between ethylene production and seedling growth of sugar beet (Beta vulgaris L.), yet the exact function of ethylene during this early developmental stage is still unclear. While ethylene is mostly considered to be a root growth inhibitor, we found that external 1-aminocyclopropane-1-carboxylic acid (ACC) regulates root growth in sugar beet in a concentration-dependent manner: low concentrations stimulate root growth while high concentrations inhibit root growth. These results reveal that ethylene action during root elongation is strongly concentration dependent. Furthermore our detailed study of ethylene biosynthesis kinetics revealed a very strict gene regulation pattern of ACC synthase (ACS) and ACC oxidase (ACO), in which ACS is the rate liming step during sugar beet seedling development.  相似文献   

8.
Chalutz E 《Plant physiology》1973,51(6):1033-1036
Ethylene enhanced the activity of phenylalanine ammonialyase in carrot (Daucus carota L., var. “Nauty”) root tissue. Slight increase in enzyme activity was exhibited by root discs incubated in ethylene-free air. It was probably due to the ethylene formed within the sliced tissue. Addition of ethylene to the air stream increased phenylalanine ammonia-lyase activity and the total protein content of the discs until maximum activity was reached after 36 to 48 hours of incubation. The continuous presence of ethylene was required to maintain high level of activity. Ethylene, at a concentration of 10 microliter per liter induced higher activity than at lower or higher concentrations. CO2 partially inhibited the ethylene-induced activity. Cycloheximide or actinomycin D effectively inhibited the ethylene-induced activity in discs that had not previously been exposed to ethylene. The results appear to support the hypothesis that the mode of action of ethylene may involve both de novo synthesis of the enzyme protein and protection or regulation of activity of the induced enzyme.  相似文献   

9.
Ethylene and in vitro rooting of rose shoots   总被引:2,自引:0,他引:2  
Effects of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene biosynthesis inhibitor, (CoCl2), and inhibitor of ethylene binding to receptors, 1-methylcyclopropene (1-MCP), on ethylene production and rooting in shoot culture of Rosa hybrida L. cv. Alba meidiland were studied. Additionally, effect of ethylene removal by KMnO4 and HgClO4 on rooting was tested. ACC increased ethylene production and delayed root formation, decreased the number of roots per shoot and inhibited root growth. In contrast, inhibition of ethylene production by CoCl2 accelerated root emergence, and increased the number of roots per shoot. Likewise, removing ethylene from the ambient atmosphere improved root emergence and, increased root number of per shoot and markedly inhibited root growth. Blocking the ethylene receptors by 1-MCP increased ethylene level in the ambient atmosphere and increased both emergence and root formation. Both ethylene biosynthesis and action are involved in the control of rooting. Ethylene concentration in glass jars was too high for root emergence and formation, but was appropriate for root growth. CoCl2 or 1-MPC can be recommended for regulation of rooting in rose shoot culture, since both emergence and number of roots were improved but root growth was not inhibited.  相似文献   

10.
Effects of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and three ethylene inhibitors, AgNO3, aminoethoxyvinyglycine (AVG) and CoCl2, on root formation were tested in vitro using shoot cultures of the apple (Malus×domestica Borkh.) cultivar Royal Gala. ACC inhibited root formation by delaying root emergence and increasing callus formation at the bases of shoots. In contrast, ethylene inhibitors promoted root formation. Both AgNO3 and AVG at the appropriate concentrations increased the percentage of shoots producing roots and reduced callus formation at the base of these shoots. AgNO3 stimulated root emergence and enhanced root growth, while AVG increased the number of roots per shoot. CoCl2 slightly increased root number and rooting efficiency. These promotive effects may result from a reduction in ethylene concentration or inhibition of ethylene action. The results found in this study may be used to improve the rooting efficiency of other apple cultivars and rootstocks, and possibly of other plant species. Received: 2 March 1997 / Revision received: 1 July 1997 / Accepted: 18 July 1997  相似文献   

11.
The addition of 1-aminocyclopropane-1-carboxylic acid (ethylene precursor), or 2-chloroethylphosphonic acid (ethephon, an ethylene-releasing compound) decreased root dry weight and l-DOPA (l-3,4-dihydroxyphenylalanine) accumulation in hairy root cultures of Stizolobium hassjoo. The inhibition caused by ethephon-mediated ethylene release was alleviated by 0.5 mg CoCl2 l–1 as an inhibitor of ethylene biosynthesis. The action of ethylene was inhibited by 1.5 mg AgNO3 l–1. Ethylene thus lowers hairy root formation and l-DOPA production; CoCl2 decreases ethylene formation leading to a considerably improved root dry weight and l-DOPA production.  相似文献   

12.
The possible involvement of ethylene in in vitrorooting of faba bean (Vicia faba L.) shootsregenerated on medium containing thidiazuron wasinvestigated. The effects of the ethylene precursor1-aminocyclopropane-1-carboxylic acid (ACC) and threeethylene inhibitors, silver nitrate (AgNO3),acetyl salicylic acid (ASA) and cobalt chloride(CoCl2) on root formation were tested in vitrousing TDZ-induced shoots of faba bean accession 760.ACC inhibited root formation. In contrast, ethyleneinhibitors promoted root formation, AgNO3 at theappropriate concentrations enhanced root emergence andincreased root number per shoot, root growth rate, androot length. Both CoCl2 and ASA at theappropriate concentrations increased rootingefficiency. These promotive effects may result from areduction in ethylene concentration or inhibition ofethylene action. The results offer a new approach toimprove the rooting efficiency of TDZ-induced shootsof faba bean and possibly of other plant species.  相似文献   

13.
Adventitious root formation is essential for cutting propagation of diverse species; however, until recently little was known about its regulation. Strigolactones and ethylene have both been shown to inhibit adventitious roots and it has been suggested that ethylene interacts with strigolactones in root hair elongation. We have investigated the interaction between strigolactones and ethylene in regulating adventitious root formation in intact seedlings of Arabidopsis thaliana. We used strigolactone mutants together with 1-aminocyclopropane-1-carboxylic acid (ACC) (ethylene precursor) treatments and ethylene mutants together with GR24 (strigolactone agonist) treatments. Importantly, we conducted a detailed mapping of adventitious root initiation along the hypocotyl and measured ethylene production in strigolactone mutants. ACC treatments resulted in a slight increase in adventitious root formation at low doses and a decrease at higher doses, in both wild-type and strigolactone mutants. Furthermore, the distribution of adventitious roots dramatically changed to the top third of the hypocotyl in a dose-dependent manner with ACC treatments in both wild-type and strigolactone mutants. The ethylene mutants all responded to treatments with GR24. Wild type and max4 (strigolactone-deficient mutant) produced the same amount of ethylene, while emanation from max2 (strigolactone-insensitive mutant) was lower. We conclude that strigolactones and ethylene act largely independently in regulating adventitious root formation with ethylene controlling the distribution of root initiation sites. This role for ethylene may have implications for flood response because both ethylene and adventitious root development are crucial for flood tolerance.  相似文献   

14.
The involvement of gibberellins (GAs) and ethylene in the process of root radial expansion was studied in young seedlings of Carrizo citrange [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.]. The GA inhibitors cycocel, paclobutrazol, and tetcyclacis enhanced radial expansion of the root tip (up to 2.3-fold) as a result of increases in stele diameter and inner cortex width. The GA deficiency increased cell number and width, and changed the polarity of growth, generating wider and shorter cortical cells in the elongation zone. In the presence or absence of GA inhibitors, GA3 decreased root tip width and reduced all parameters related to radial expansion. The ethylene inhibitors (aminooxyacetic acid; cobalt ions, CoCl2; silver thiosulfate) suppressed swelling induced by GA deficiency, generating thinner cells just as GA3 did. In contrast to GA3, ethylene inhibitors produced longer cells strongly resembling those of the untreated seedlings. Ethylene released by ethephon did not modify root tip width in control plants, while root diameter behind the root tip was increased. In the presence of low and ineffective concentrations of cycocel, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid increased radial expansion of root tips (1.3-fold) and changed the polarity of growth, producing wider and shorter inner cortical cells as GA inhibitors did. These observations imply, first, that ethylene is the hormonal effector of the process of root radial expansion and, second, that the endogenous GAs modulate the promotive response of ethylene. Received: 4 October 1996 / Accepted: 25 December 1996  相似文献   

15.
The effects of waterlogging on the dynamics of leaf abscisic acid (ABA) and root 1-aminocyclopropane-1-carboxilic acid (ACC, a precursor of ethylene) contents together with those on photosynthetic rate, leaf water potential and chlorophyll fluorescence were studied in mungbean (Vigna radiata (L.) Wilczak cv. KPS1) plants under greenhouse conditions. Waterlogging reduced the photosynthetic rate and water use efficiency rapidly without any changes of stomatal conductance, transpiration rate and ABA concentrations. Rapid reduction of photosynthetic rate and Fv/Fm ratio of chlorophyll fluorescence without increase of ABA indicates that early reduction of photosynthetic rate may not be related to ABA. In addition, the slower recovery of P, P/Tr and Fv/Fm values than ABA implies that ABA is not completely involved in photosynthetic reduction. Increased concentration of ACC during the waterlogging period and after the end of waterlogging may indicate the involvement of ethylene in photosynthetic reduction through the reduction of PSII activities, although early reduction of photosynthesis could not be explained by ethylene. After 2 days of waterlogging, ABA was increased concomitantly with the rapid reduction of P, Tr and gs. It may suggest that ABA reduces photosynthesis through some ABA-related reactions, such as stomatal closure.  相似文献   

16.
Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.  相似文献   

17.
We examined ethylene effects on root regeneration in tomato leaf discs cultured in vitro. Applied ethylene or Ethephon did not stimulate rooting in the leaf discs. In the presence of indoleacetic acid. 5 × 10-6M, these substances significantly inhibited root formation. Ethylene production (nl C2H4· (24 h)-1. flask-1) was positively correlated with increased IAA concentrations at various times during the culture period and, as a consequence, with the rooting response after 168 h. However, separate testing of equimolar concentrations of seven different auxins and auxin-like compounds showed no positive correlation between the rate of ethylene production and subsequent rooting response. Aeration of gas-tight flasks containing leaf discs and absorption of ethylene evolved from the discs by mercuric perchlorate in gas-tight flasks or pre-treatment of leaf discs with AgNO3 significantly enhanced IAA induced root regeneration. Thus, these studies indicate that ethylene is not a rooting hormone per se. Furthermore, ethylene (whether applied externally or synthesized by the tissue) does not appear to account for the ability of auxin to stimulate rooting.  相似文献   

18.
19.
20.
The capacity of plants to achieve successful germination and early seedling establishment under high salinity is crucial for tolerance of plants to salt. The gaseous hormone ethylene has been implicated in modulating salt tolerance, but the detailed role of how ethylene modulates the response of early seedling establishment to salt is unclear. To better understand the role of the ethylene signal transduction pathway during germination and seedling establishment, an ethylene insensitive mutation (ein2-5) and an ethylene sensitive mutation (ctr1-1) of Arabidopsis were analyzed under saline conditions and compared with the wild type plant (Col-0) as control. High salinity (>100?mM NaCl) inhibited and delayed germination. These effects were more severe in the ethylene insensitive mutants (ein2-5) and less severe in the constitutive ethylene sensitive plants (ctr1-1) compared with Col-0 plants. Addition of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or inhibitors of ethylene action implied that ethylene was essential for early seedling establishment under normal and saline conditions. Salt stress increased the endogenous concentration of hydrogen peroxide (H2O2) in germinating seeds and ACC reduced its concentration. Our results suggest that ethylene promotes germination under salinity by modulating the endogenous concentration of H2O2 in germinating seeds. These findings demonstrate that ethylene is involved in regulating germination as an initiator of the process rather than consequence, and that ethylene promotes germination by modulating the endogenous concentration of H2O2 in germinating seeds under salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号