首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene replacement (GR) via homologous recombination is a powerful tool for genome editing. Recently, direct GR is achieved successfully by coinjection of mRNAs for engineered endonucleases such as zinc finger nucleases (ZFNs) and donor DNA in developing embryos of diverse organisms. Here, we report the procedures and efficiency for direct GR by using ZFNs in the fish medaka. Upon zygotic coinjection of mRNAs encoding ZFNs that target the gonad-specifically expressed gsdf locus, linear DNA of GR vector pGRgsdf containing the red fluorescent protein (rfp) gene flanked by two homology arms of ~1-kb each underwent GR via homologous recombination. Specifically, 15 of 231 adults from manipulated embryos contained a GR allele in the caudal fin, producing an efficiency of ~7 % for somatic GR. Progeny test revealed that two out of nine fertile fish containing the GR allele in the fin were capable of transmitting the GR allele to ~6 % of F1 generation at adulthood, generating an efficiency of ~22 % for germline transmission. Sequencing and Southern blotting validated precise GR. We show that the GR allele expressed a chimeric gsdf:rfp RNA between gsdf and cointegrated rfp specifically in the gonad, demonstrating recapitulation of endogenous RNA expression as predicted for the defined GR allele. Most importantly, RFP expression coincides faithfully with the gonad-specific gsdf expression in developing embryos and adults. These results demonstrate, for the first time, the feasibility and efficiency of ZFN-mediated precise GR directly in the developing embryo of medaka as a lower vertebrate model.  相似文献   

2.
Gene targeting (GT) can introduce subtle alterations into a particular locus and represents a powerful tool for genome editing. Engineered zinc finger nucleases (ZFNs) are effective for generating minor allelic alterations. Efficient detection of such minor alterations remains one of the challenges in ZFN-mediated GT experiments. Here, we report the establishment of procedures allowing for efficient detection, quantification and enrichment of such subtle alterations. In a biallelic model, polyacrylamide gel electrophoresis (PAGE) is capable of detecting rare allelic variations in the form of DNA heteroduplexes at a high efficiency of ∼0.4% compared with ∼6.3% by the traditional T7 endonuclease I-digestion and agarose gel electrophoresis. In a multiple allelic model, PAGE could discriminate different alleles bearing addition or deletion of 1–18 bp as distinct bands that were easily quantifiable by densitometry. Furthermore, PAGE enables enrichment for rare alleles. We show for the first time that direct endogenous GT is possible in medaka by ZFN RNA injection, whereas PAGE allows for detection and cloning of ZFN-targeted alleles in adults arising from ZFN-injected medaka embryos. Therefore, PAGE is effective for detection, quantification and enrichment of multiple fine allelic differences and thus offers a versatile tool for screening targeted subtle gene alterations.  相似文献   

3.
Prior to the development of zinc-finger nuclease technology, genetic manipulation by gene targeting achieved limited success in mammals, with the exception of mice and rat. Although ZFNs demonstrated highly effective gene targeted disruption in various model organisms, the activity of ZFNs in large domestic animals may be very low, and the probability of identifying ZFN-mediated positive targeted disruption events is small. In this paper, we used the context-dependent assembly method to synthesize two pairs of ZFNs targeted to the sheep MSTN gene. We verified the activity of these ZFNs using an mRFP-MBS-eGFP dual-fluorescence reporter system in HEK293T cells and, according to the expression level of eGFP, we obtained a pair of ZFNs that can recognize and cut the targeted MSTN site in the reporter vector. The activity of ZFN was increased by cold stimulation at 30 °C and by mutant the wildtype FokI in ZFN with its counterpart Sharkeys. Finally, the ZF-Sharkeys and reporter vector were cotransfected into sheep fetal fibroblasts and two MSTN mutant cell lines, identified by flow cytometry and sequencing, were obtained.  相似文献   

4.
5.
Zinc finger nuclease (ZFN)-mediated gene targeting is rapidly becoming a powerful tool for "gene editing" and "directed mutagenesis" of plant and mammalian genomes including the human genome. ZFN-mediated gene targeting provides molecular biologists with the ability to site-specifically manipulate and permanently modify plant and mammalian genomes. Facile production of ZFNs and rapid characterization of their in vitro sequence-specific cleavage properties are a pre-requisite before ZFN-mediated gene targeting can become an efficient and effective practical tool for widespread use in biotechnology. Here, we report the design, engineering, and rapid in vitro characterization of ZFNs that target specific endogenous sequences within two mouse genes (mTYR and mCFTR), and two human genes (hCCR5 and hDMPK), respectively. These engineered ZFNs recognize their respective cognate DNA sites encoded in a plasmid substrate in a sequence-specific manner and, as expected, they induce a double-strand break at the chosen target site.  相似文献   

6.
Zinc finger nucleases (ZFNs) have been used successfully to create genome-specific double-strand breaks and thereby stimulate gene targeting by several thousand fold. ZFNs are chimeric proteins composed of a specific DNA-binding domain linked to a non-specific DNA-cleavage domain. By changing key residues in the recognition helix of the specific DNA-binding domain, one can alter the ZFN binding specificity and thereby change the sequence to which a ZFN pair is being targeted. For these and other reasons, ZFNs are being pursued as reagents for genome modification, including use in gene therapy. In order for ZFNs to reach their full potential, it is important to attenuate the cytotoxic effects currently associated with many ZFNs. Here, we evaluate two potential strategies for reducing toxicity by regulating protein levels. Both strategies involve creating ZFNs with shortened half-lives and then regulating protein level with small molecules. First, we destabilize ZFNs by linking a ubiquitin moiety to the N-terminus and regulate ZFN levels using a proteasome inhibitor. Second, we destabilize ZFNs by linking a modified destabilizing FKBP12 domain to the N-terminus and regulate ZFN levels by using a small molecule that blocks the destabilization effect of the N-terminal domain. We show that by regulating protein levels, we can maintain high rates of ZFN-mediated gene targeting while reducing ZFN toxicity.  相似文献   

7.
8.
Zinc finger nuclease (ZFN) technology can mediate targeted genome modification to produce transgenic animals in a high-efficient and biological-safe way. Modular assembly is a rapid, convenient and open-source method for the synthesis of ZFNs. However, this biotechnology is hampered by multistep construction, low-efficiency editing and off-target cleavage. Here we synthesized and tested six pairs of three- or four-finger ZFNs to target one site in goat beta-lactoglobulin (BLG, a dominant allergen in goat milk) gene. Homology modeling was applied to build the structure model of ZFNs to predict their editing activities targeting at goat BLG gene. Goat fibroblast cells were transfected with plasmids that encoded ZFN pairs, and genomic DNA was isolated 72 h later for genome editing efficiency assay. The results of editing efficiency assay demonstrated that ZFNs with optimal interaction modes can edit goat BLG gene more efficiently, whereas ZFNs with unexpected interaction modes showed lower activities in editing BLG gene. We concluded that modular-assembly ZFNs can provide a rapid, public-available, and easy-to-practice platform for transgenic animal research and molecular modeling would help as a useful tool for ZFNs activity prediction.  相似文献   

9.
Gene flow from recombinant-DNA-modified (GMO) trees is a major barrier to their public acceptance and regulatory approval. Because many intensively grown trees are vegetatively propagated, complete sexual sterility could be a powerful means to mitigate or prevent gene flow. We tested four pairs of zinc-finger nucleases (ZFNs) as mutagenic agents against the LEAFY and AGAMOUS orthologs in poplar that are expected to be required for sexual fertility. To reduce the potential for pleiotropic effects from mutagenesis, each of the pairs was functionally linked to a heat shock promoter to provide inducible ZFN expression. Using Agrobacterium tumefaciens, we transformed more than 21,000 total explants compromised of both male and female hybrid poplar. The rate of transformation for the ZFN constructs (2 %) was generally reduced compared to the transgenic control (8 %). We produced 391 ZFN transgenic shoots of which only two developed into plants with mutations in a target gene; both were 7-bp deletions in one allele of the PtAG2 locus. No mutations were observed in the PtAG1 or PtLFY loci. Our results indicate a mutation rate of zero to 0.3 % per explant per allele, among the lowest reported for ZFN mutagenesis in plants. The combined effects of low recovery of transgenic plants, a modest mutation frequency, and much higher reported rates of directed mutation for other gene editing methods suggest that the efficient use of ZFNs in poplar requires further technical improvements.  相似文献   

10.
11.
Genetically modified pigs are valuable models of human disease and donors of xenotransplanted organs.Conventional gene targeting in pig somatic cells is extremely inefficient.Zinc-finger nuclease(ZFN)technology has been shown to be a powerful tool for efficiently inducing mutations in the genome.However,ZFN-mediated targeting in pigs has rarely been achieved.Here,we used ZFNs to knock out the porcineα-1,3-galactosyl-transferase(GGTA1)gene,which generates Gal epitopes that trigger hyperacute immune rejection in pig-to-human transplantation.Primary pig fibroblasts were transfected with ZFNs targeting the coding region of GGTA1.Eighteen mono-allelic and four biallelic knockout cell clones were obtained after drug selection with efficiencies of 23.4%and 5.2%,respectively.The biallelic cells were used to produce cloned pigs via somatic cell nuclear transfer(SCNT).Three GGTA1 null piglets were born,and one knockout primary fibroblast cell line was established from a cloned fetus.Gal epitopes on GGTA1 null pig cells were completely eliminated from the cell membrane.Functionally,GGTA1 knockout cells were protected from complement-mediated immune attacks when incubated with human serum.This study demonstrated that ZFN is an efficient tool in creating gene-modified pigs.GGTA1 null pigs and GGTA1 null fetal fibroblasts would benefit research and pig-to-human transplantation.  相似文献   

12.
Zinc-finger nucleases (ZFNs) have been successfully used for rational genome engineering in a variety of cell types and organisms. ZFNs consist of a non-specific FokI endonuclease domain and a specific zinc-finger DNA-binding domain. Because the catalytic domain must dimerize to become active, two ZFN subunits are typically assembled at the cleavage site. The generation of obligate heterodimeric ZFNs was shown to significantly reduce ZFN-associated cytotoxicity in single-site genome editing strategies. To further expand the application range of ZFNs, we employed a combination of in silico protein modeling, in vitro cleavage assays, and in vivo recombination assays to identify autonomous ZFN pairs that lack cross-reactivity between each other. In the context of ZFNs designed to recognize two adjacent sites in the human HOXB13 locus, we demonstrate that two autonomous ZFN pairs can be directed simultaneously to two different sites to induce a chromosomal deletion in ∼10% of alleles. Notably, the autonomous ZFN pair induced a targeted chromosomal deletion with the same efficacy as previously published obligate heterodimeric ZFNs but with significantly less toxicity. These results demonstrate that autonomous ZFNs will prove useful in targeted genome engineering approaches wherever an application requires the expression of two distinct ZFN pairs.  相似文献   

13.
Zinc-finger nucleases (ZFNs) are artificial enzymes that create site-specific double-strand breaks and thereby induce targeted genome editing. Here, we demonstrated successful gene disruption in somatic and germ cells of medaka (Oryzias latipes) using ZFN to target exogenous EGFP genes. Embryos that were injected with an RNA sequence pair coding for ZFNs showed mosaic loss of green fluorescent protein fluorescence in skeletal muscle. A number of mutations that included both deletions and insertions were identified within the ZFN target site in each embryo, whereas no mutations were found at the non-targeted sites. In addition, ZFN-induced mutations were introduced in germ cells and efficiently transmitted to the next generation. The mutation frequency varied (6-100%) in the germ cells from each founder, and a founder carried more than two types of mutation in germ cells. Our results have introduced the possibility of targeted gene disruption and reverse genetics in medaka.  相似文献   

14.
Custom-designed zinc finger nucleases (ZFNs), proteins designed to cut at specific DNA sequences, are becoming powerful tools in gene targeting—the process of replacing a gene within a genome by homologous recombination (HR). ZFNs that combine the non-specific cleavage domain (N) of FokI endonuclease with zinc finger proteins (ZFPs) offer a general way to deliver a site-specific double-strand break (DSB) to the genome. The development of ZFN-mediated gene targeting provides molecular biologists with the ability to site-specifically and permanently modify plant and mammalian genomes including the human genome via homology-directed repair of a targeted genomic DSB. The creation of designer ZFNs that cleave DNA at a pre-determined site depends on the reliable creation of ZFPs that can specifically recognize the chosen target site within a genome. The (Cys2His2) ZFPs offer the best framework for developing custom ZFN molecules with new sequence-specificities. Here, we explore the different approaches for generating the desired custom ZFNs with high sequence-specificity and affinity. We also discuss the potential of ZFN-mediated gene targeting for ‘directed mutagenesis’ and targeted ‘gene editing’ of the plant and mammalian genome as well as the potential of ZFN-based strategies as a form of gene therapy for human therapeutics in the future.  相似文献   

15.
Creating designed zinc-finger nucleases with minimal cytotoxicity   总被引:1,自引:0,他引:1  
Zinc-finger nucleases (ZFNs) have emerged as powerful tools for delivering a targeted genomic double-strand break (DSB) to either stimulate local homologous recombination with investigator-provided donor DNA or induce gene mutations at the site of cleavage in the absence of a donor by nonhomologous end joining both in plant cells and in mammalian cells, including human cells. ZFNs are formed by fusing zinc-finger proteins to the nonspecific cleavage domain of the FokI restriction enzyme. ZFN-mediated gene targeting yields high gene modification efficiencies (> 10%) in a variety of cells and cell types by delivering a recombinogenic DSB to the targeted chromosomal locus, using two designed ZFNs. The mechanism of DSB by ZFNs requires (1) two ZFN monomers to bind to their adjacent cognate sites on DNA and (2) the FokI nuclease domains to dimerize to form the active catalytic center for the induction of the DSB. In the case of ZFNs fused to wild-type FokI cleavage domains, homodimers may also form; this could limit the efficacy and safety of ZFNs by inducing off-target cleavage. In this article, we report further refinements to obligate heterodimer variants of the FokI cleavage domain for the creation of custom ZFNs with minimal cellular toxicity. The efficacy and efficiency of the reengineered obligate heterodimer variants of the FokI cleavage domain were tested using the green fluorescent protein gene targeting reporter system. The three-finger and four-finger zinc-finger protein fusions to the REL_DKK pair among the newly generated FokI nuclease domain variants appear to eliminate or greatly reduce the toxicity of designer ZFNs to human cells.  相似文献   

16.
Zinc finger nucleases (ZFNs) enable precise genome modification in a variety of organisms and cell types. Commercial ZFNs were reported to enhance gene targeting directly in mouse zygotes, whereas similar approaches using publicly available resources have not yet been described. Here we report precise targeted mutagenesis of the mouse genome using Oligomerized Pool Engineering (OPEN) ZFNs. OPEN ZFN can be constructed using publicly available resources and therefore provide an attractive alternative for academic researchers. Two ZFN pairs specific to the mouse genomic locus gt(ROSA26)Sor were generated by OPEN selections and used for gene disruption and homology-mediated gene replacement in single cell mouse embryos. One specific ZFN pair facilitated non-homologous end joining (NHEJ)-mediated gene disruption when expressed in mouse zygotes. We also observed a single homologous recombination (HR)-driven gene replacement event when this ZFN pair was co-injected with a targeting vector. Our experiments demonstrate the feasibility of achieving both gene ablation through NHEJ and gene replacement by HR by using the OPEN ZFN technology directly in mouse zygotes.  相似文献   

17.
18.
Gene targeting is a powerful tool for analyzing gene function. Recently, new technology for gene targeting using engineered zinc-finger nucleases (ZFNs) has been described in fish species. However, it has not yet been widely used for cold water and slow developing species, such as Salmonidae. Here, we present the results of successful ZFN-mediated disruption of the sex-determining gene sdY (sexually dimorphic on the Y chromosome) in rainbow trout (Oncorhynchus mykiss). Three pairs of ZFN mRNA targeted to different regions of the sdY gene were injected into fertilized rainbow trout eggs. Sperm from 1-year-old male founders (parental generation one or P1) carrying a ZFN-induced mutation in their germline were then used to produce F1 non-mosaic animals. In these F1 populations, we characterized 14 different mutations in the sdY gene, including one mutation leading to the deletion of leucine 43 (L43) and 13 mutations at other target sites that had different effects on the SdY protein, i.e., amino acid insertions, deletions, and frameshift mutations producing premature stop codons in the mRNA. The gonadal phenotype analysis of the F1-mutated animals revealed that the single L43 amino acid deletion did not lead to a male-to-female sex reversal, but all other mutations induced a clear ovarian phenotype. These results show that targeted gene disruption using ZFN is efficient in rainbow trout but depends on the ZFN design. We also characterized new sdY mutations resulting in male-to-female sex reversal, and we conclude that L43 seems dispensable for SdY function.  相似文献   

19.
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号