首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of phosphonic analogues of tyrosine and 3,4-dihydroxyphenylalanine (dopa) were synthesized in order to study their interaction with mushroom tyrosinase. 1-Amino-2-(3,4-dihydroxyphenyl)ethylphosphonic acid and 1-amino-2-(3,4-dimethoxyphenyl)ethylphosphonic acid turned out to be substrates for mushroom tyrosinase with Km values of 3.3 mM and 9.3 mM respectively. Shortening of the alkyl chain by one methylene group gave amino-(3,4-dihydroxyphenyl)methylphosphonic acid, one of the most powerful known inhibitors of this enzyme. This compound, racemic as well as in its optically active forms, exerts a mixed type of inhibition with an affinity for the enzyme one order of magnitude greater than that of the natural substrate.  相似文献   

2.
Inhibition of xanthine oxidase-catalyzed conversion of xanthine to uric acid by various pyrazolopyrimidine-based inhibitors (allopurinol derivatives) was evaluated and compared with the standard inhibitor allopurinol. Three compounds out of the seven compounds used in the study were found to be reasonably good inhibitors of xanthine oxidase (XO). 4-Amino-6-mercaptopyrazolo-3,4-d-pyrimidine was found to be the most potent inhibitor of XO (IC50 = 0.600 +/- 0.009 microM). 4-Mercapto-1H-pyrazolo-3,4-d-pyrimidine (IC50 = 1.326 +/- 0.013 microM) and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine (IC50 = 1.564 +/- 0.065 microM) also showed comparable inhibitory activity to that of allopurinol (IC50 = 0.776 +/- 0.012 microM). All three compounds showed competitive type of inhibition with comparable Ki values. Induction of the electron transfer reaction catalyzed by XO in the presence of these compounds monitored as reduction of 2,6-dichlorophenolindophenol (DCPIP) revealed that electron transfer by 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine is comparable to that obtained by allopurinol or xanthine. However, 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine did not show DCPIP reduction. On the other hand, enzymatic reduction of cytochrome c in the presence of the three compounds was found to be insignificant and much less in comparison to allopurinol and xanthine. Therefore, both 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine and 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine displayed the inhibitory property and also did not produce XO-mediated reactive oxygen species (ROS). Since 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine was found to have some toxicity, the effect of 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine on the enzymatic formation of uric acid and ROS was investigated and it was found that this compound was inhibiting enzymatic generation of both uric acid and ROS. It can be noted that the standard inhibitor, allopurinol, inhibits uric acid formation but produces ROS.  相似文献   

3.
Inhibition of xanthine oxidase-catalyzed conversion of xanthine to uric acid by various pyrazolopyrimidine-based inhibitors (allopurinol derivatives) was evaluated and compared with the standard inhibitor allopurinol. Three compounds out of the seven compounds used in the study were found to be reasonably good inhibitors of xanthine oxidase (XO). 4-Amino-6-mercaptopyrazolo-3,4-d-pyrimidine was found to be the most potent inhibitor of XO (IC50=0.600±0.009 µM). 4-Mercapto-1H-pyrazolo-3,4-d-pyrimidine (IC50=1.326±0.013 µM) and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine (IC50=1.564±0.065 µM) also showed inhibitory activity comparable to that of allopurinol (IC50 = 0.776 ± 0.012 µM). All three compounds showed competitive type of inhibition with comparable Ki values. Induction of the electron transfer reaction catalyzed by XO in the presence of these compounds monitored as reduction of 2,6-dichlorophe nolindophenol (DCPIP) revealed that electron transfer by 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine is comparable to that obtained by allopurinol or xanthine. However, 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine did not show DCPIP reduction. On the other hand, enzymatic reduction of cytochrome c in the presence of the three compounds was found to be insignificant and much less in comparison to allopurinol and xanthine. Therefore, both 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine and 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine displayed the inhibitory property and also did not produce XO-mediated reactive oxygen species (ROS). Since 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine was found to have some toxicity, the effect of 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine on the enzymatic formation of uric acid and ROS was investigated and it was found that this compound inhibited enzymatic generation of both uric acid and ROS. It can be noted that the standard inhibitor, allopurinol, inhibits uric acid formation but produces ROS.  相似文献   

4.
The effect of variously substituted derivatives of 4-hydroxybenzoic acid on 4-hydroxybenzoate:polyprenyltransferase activity in mitochondrial preparations derived from rat liver and brain has been investigated. Catecholamines such as dihyroxyphenylalanine and norepinephrine showed a minor inhibition of the activity of the enzyme in brain mitochondrial preparations, 4-aminobenzoic acid and 4-chlorobenzoic acid proved to be the most potent inhibitors of the reaction. Inhibition by 4-hydroxymercuribenzoate indicated that -SH groups were essential for activity. Studies using 14C-labeled compounds further revealed that 4-aminobenzoic acid was inhibitory by virtue of its ability to serve as an alternate substrate for prenylation. The product of the prenylation is identified as 3-polyprenyl-4-aminobenzoate based on chromatographic characteristics of the products formed in liver mitochondria and Escherichia coli, the retention of the carboxyl group of 4-[carboxyl-14C]aminobenzoate, the incorporation of isopentenyl pyrophosphate, the effect of bacitracin, and the retention of the amino group. 4-Chlorobenzoic acid was not prenylated. A survey of rat tissues shows that heart tissue contains maximum polyprenyltransferase activity when compared to liver, kidney, spleen and brain. The significance of the above results is discussed.  相似文献   

5.
The shikimate pathway, including seven enzymatic steps for production of chorismate via shikimate from phosphoenolpyruvate and erythrose-4-phosphate, is common in various organisms for the biosynthesis of not only aromatic amino acids but also most biogenic benzene derivatives. 3-Amino-4-hydroxybenzoic acid (3,4-AHBA) is a benzene derivative serving as a precursor for several secondary metabolites produced by Streptomyces, including grixazone produced by Streptomyces griseus. Our study on the biosynthesis pathway of grixazone led to identification of the biosynthesis pathway of 3,4-AHBA from two primary metabolites. Two genes, griI and griH, within the grixazone biosynthesis gene cluster were found to be responsible for the biosynthesis of 3,4-AHBA; the two genes conferred the in vivo production of 3,4-AHBA even on Escherichia coli. In vitro analysis showed that GriI catalyzed aldol condensation between two primary metabolites, l-aspartate-4-semialdehyde and dihydroxyacetone phosphate, to form a 7-carbon product, 2-amino-4,5-dihydroxy-6-one-heptanoic acid-7-phosphate, which was subsequently converted to 3,4-AHBA by GriH. The latter reaction required Mn(2+) ion but not any cofactors involved in reduction or oxidation. This pathway is independent of the shikimate pathway, representing a novel, simple enzyme system responsible for the synthesis of a benzene ring from the C(3) and C(4) primary metabolites.  相似文献   

6.
U Keller  H Kleinkauf  R Zocher 《Biochemistry》1984,23(7):1479-1484
A 4-methyl-3-hydroxyanthranilic acid (4-MHA) activating enzyme was purified 24-fold from a crude protein extract of Streptomyces chrysomallus . The enzyme catalyzes both 4-MHA-dependent ATP/PPi exchange and the formation of the corresponding adenylate. No AMP was formed during the reaction, indicating that no covalent binding of 4-MHA takes place. Besides 4-MHA, the enzyme also catalyzes the formation of adenylates from 3-hydroxyanthranilic acid (3-HA), anthranilic acid (AA), benzoic acid (BA), 3-hydroxybenzoic acid (3-HB), 4-methyl-3-hydroxybenzoic acid (4-MHB), 4-methyl-3-methoxybenzoic acid (4- MMB ), and 4-aminobenzoic acid (4-AB). No such adenylates were formed from 2-aminophenol (2-AP), 2-hydroxybenzoic acid (2-HB), 3-hydroxykynurenine (3-HK), and tryptophan (Trp). 3-HA, 4-MHB, and 4-AB were among the structural analogues of 4-MHA that were the most effective for adenylate synthesis. In the case of 3-HA, considerable AMP release was observed, most probably due to nonenzymatic hydrolysis of the corresponding adenylate. A molecular weight between 53 000 and 57 000 was estimated. The specific activity of the enzyme was correlated with the titer of antibiotic in the cultures, and feeding experiments with whole mycelium of S. chrysomallus showed that 4-MHB was a strong inhibitor of actinomycin synthesis in vivo. The data strongly suggest that the enzyme is involved in the biosynthesis of actinomycin.  相似文献   

7.
A series of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides were tailored and synthesized as new potent inhibitors of tyrosinase. The rationale for inhibitor design was based on the active site structural evidence from the crystal structures of bacterial tyrosinase and potato catechol oxidase enzymes. Kinetic and active site binding studies suggested mono-dentate binding of thiadiazole, oxadiazole, and triazole rings to the active site dicopper center of tyrosinase including hydrophobicity contributing to the potent inhibition. Kinetic plots showed mixed-type of inhibition by all 25 compounds. Substitutions at C3 of the triazole ring and C5 of the thiadiazole/oxadiazole rings were found to be playing a major role in the high binding affinity to tyrosinase. The current work may help develop new potent tyrosinase inhibitors against hyperpigmentation including potential insecticides.  相似文献   

8.
P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3. Omega-imidazolyl fatty acids have previously been found to be weak inhibitors of the enzyme and show some unusual cooperativity with the substrate lauric acid. We set out to improve the properties of these inhibitors by attaching the omega-imidazolyl fatty acid to the nitrogen of an amino acid group, a tactic that we used previously to increase the potency of substrates. The resulting inhibitors were significantly more potent than their parent compounds lacking the amino acid group. A crystal structure of one of the new inhibitors bound to the heme domain of P450BM-3 reveals that the mode of interaction of the amino acid group with the enzyme is different from that previously observed for acyl amino acid substrates. Further, required movements of residues in the active site to accommodate the imidazole group provide an explanation for the low affinity of imidazole itself. Finally, the previously observed cooperativity with lauric acid is explained by a surprisingly open substrate-access channel lined with hydrophobic residues that could potentially accommodate lauric acid in addition to the inhibitor itself.  相似文献   

9.
Salicylic acid slightly inhibited the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by mushroom tyrosinase noncompetitively without being oxidized. In contrast, 4-hydroxybenzoic acid did not inhibit this enzymatic oxidation if a longer reaction time was observed, although it suppressed the initial rate of the oxidation to a certain extent. Neither acid showed noticeable effects on cultured murine B16-F10 melanoma cells except weak cytotoxicity.  相似文献   

10.
1-Alkylbenzimidazole and 1,3-dialkyl benzimidazolium salts were synthesized and characterized by the data of IR, 1H NMR, 13C NMR spectra and elemental analyses. These compounds were investigated as tyrosinase inhibitors. Tyrosinase has been purified from banana by affinity chromatography on a Sepharose 4B gel conjugated with L-tyrosine-p-aminobenzoic acid. All the synthesized compounds inhibited the tyrosinase activity. Among the compounds studied, 1,4-di(1H-benzo[d]imidazol-1-yl)butane was found to be the most active tyrosinase inhibitor (IC50 0.31 mM).  相似文献   

11.
Amino-(3,4-dihydroxyphenyl)methyl phosphonic acid, the phosphonic analog of 3,4-dihydroxyphenylglycine, had been previously reported as a potent inhibitor of tyrosinase. The mechanism of the apparent enzyme inhibition by this compound has now been established. Amino-(3,4-dihydroxyphenyl)methyl phosphonic acid turned out to be a substrate and was oxidized to o-quinone, which evolved to a final product identified as 3,4-dihydroxybenzaldehyde, the same as for 3,4-dihydroxyphenylglycine. Monohydroxylated compounds (amino-(3-hydroxyphenyl)methyl phosphonic acid and amino-(4-hydroxyphenyl)methyl phosphonic acid) were not oxidized, neither was 4-hydroxy-l-phenylglycine. However, the relatively high Km for amino-(3,4-dihydroxyphenyl)methyl phosphonic acid (0.52 mm) indicated that competitive inhibition could not entirely explain the previously reported strong inhibitory effect (Ki = 50 and 97 micro m for tyrosine and 3-(3,4-dihydroxyphenyl)alanine (Dopa) as substrates, respectively). Neither was the enzyme covalently inactivated to a significant degree. Spectroscopic and electrochemical analysis of the oxidation of a mixture of Dopa and the inhibitor demonstrated that the phosphonic compound reduced dopaquinone back to Dopa, thus diminishing and delaying the formation of dopachrome. This produces an apparent strong inhibitory effect when the reaction is monitored spectrophotometrically at 475 nm. In this peculiar case Dopa acts as a redox shuttle mediating the oxidation of the shorter phosphonic homolog. Decomposition of the phosphonic o-quinone to 3,4-dihydroxybenzaldehyde drives the reaction against the slightly unfavorable difference in redox potentials.  相似文献   

12.
Six derivatives of 2-aminoindane-2-phosphonic acid and 1-aminobenzylphosphonic acid were synthesized. The compounds were tested both as inhibitors of buckwheat phenylalanine ammonia-lyase (in vitro) and as inhibitors of anthocyanin biosynthesis (in vivo). (+/-)-2-Amino-4-bromoindane-2-phosphonic acid was found to be the strongest inhibitor from investigated compounds. The results obtained are a basis for design of phenylalanine ammonia-lyase inhibitors useful in the enzyme structure studies in photo labelling experiments.  相似文献   

13.
2-amino-5-carboxymuconic 6-semialdehyde is an unstable intermediate in the meta-cleavage pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d. In vitro, this compound is nonenzymatically converted to 2,5-pyridinedicarboxylic acid. Crude extracts of strain 10d grown on 4-amino-3-hydroxybenzoic acid converted 2-amino-5-carboxymuconic 6-semialdehyde formed from 4-amino-3-hydroxybenzoic acid by the first enzyme in the pathway, 4-amino-3-hydroxybenzoate 2,3-dioxygenase, to a yellow compound (epsilonmax = 375 nm). The enzyme in the crude extract carrying out the next step was purified to homogeneity. The yellow compound formed from 4-amino-3-hydroxybenzoic acid by this purified enzyme and purified 4-amino-3-hydroxybenzoate 2,3-dioxygenase in a coupled assay was identified as 2-hydroxymuconic 6-semialdehyde by GC-MS analysis. A mechanism for the formation of 2-hydroxymuconic 6-semialdehyde via enzymatic deamination and nonenzymatic decarboxylation is proposed based on results of spectrophotometric analyses. The purified enzyme, designated 2-amino-5-carboxymuconic 6-semialdehyde deaminase, is a new type of deaminase that differs from the 2-aminomuconate deaminases reported previously in that it primarily and specifically attacks 2-amino-5-carboxymuconic 6-semialdehyde. The deamination step in the proposed pathway differs from that in the pathways for 2-aminophenol and its derivatives.  相似文献   

14.
A series of inhibitors containing all possible isomers of 4-amino-3-hydroxy-5-phenylpentanoic acid was synthesized and tested for inhibition of HIV-1 protease. Incorporation of the (3S,4S) isomer of the t-butyloxycarbonyl protected amino acid into the sequence Glu-Phe resulted in a potent inhibitor of HIV-1 protease (Ki = 63 nM). This inhibitor is at least 47-times more potent than the inhibitors containing other isomers of 4-amino-3-hydroxy-5-phenylpentanoic acid, indicating that the (3S,4S) isomer is the preferred isomer for binding to HIV-1 protease.  相似文献   

15.
A bacterial strain that grew on 4-amino-3-hydroxybenzoic acid was isolated from farm soil. The isolate, strain 10d, was identified as a species of Bordetella. Cell extracts of Bordetella sp. strain 10d grown on 4-amino-3-hydroxybenzoic acid contained an enzyme that cleaved this substrate. The enzyme was purified to homogeneity with a 110-fold increase in specific activity. The purified enzyme was characterized as a meta-cleavage dioxygenase that catalyzed the ring fission between C2 and C3 of 4-amino-3-hydroxybenzoic acid, with the consumption of 1 mol of O2 per mol of substrate. The enzyme was therefore designated as 4-amino-3-hydroxybenzoate 2,3-dioxygenase. The molecular mass of the native enzyme was 40 kDa based on gel filtration; the enzyme is composed of two identical 21-kDa subunits according to SDS/PAGE. The enzyme showed a high dioxygenase activity only for 4-amino-3-hydroxybenzoic acid. The Km and Vmax values for this substrate were 35 micro m and 12 micro mol.min-1.(mg protein)-1, respectively. Of the 2-aminophenols tested, only 4-aminoresorcinol and 6-amino-m-cresol inhibited the enzyme. The enzyme reported here differs from previously reported extradiol dioxygenases, including 2-aminophenol 1,6-dioxygenase, in molecular mass, subunit structure and catalytic properties.  相似文献   

16.

Background

o-Aminophenols have been long recognised as tyrosinase substrates. However their exact mode of interaction with the enzyme's active site is unclear. Properly vic-substituted o-aminophenols could help gain some insight into tyrosinase catalytic mechanism.

Methods

Eight vic-substituted o-aminophenols belonging to two isomeric series were systematically evaluated as tyrosinase substrates and/or activators and/or inhibitors, by means of spectrophotometric techniques and HPLC-MS analysis. Some relevant kinetic parameters have also been obtained.

Results

Four o-aminophenolic compounds derived from 3-hydroxyorthanilic acid (2-amino-3-hydroxybenzenesulfonic acid) and their four counterparts derived from the isomeric 2-hydroxymetanilic acid (3-amino-2-hydroxybenzenesulfonic acid) were synthesised and tested as putative substrates for mushroom tyrosinase. While the hydroxyorthanilic derivatives were quite inactive as both substrates and inhibitors, the hydroxymetanilic compounds on the contrary all acted as substrates for the enzyme, which oxidised them to the corresponding phenoxazinone derivatives.

General significance

Based on the available structures of the active sites of tyrosinases, the different affinities of the four metanilic derivatives for the enzyme, and their oxidation rates, we propose a new hypothesis regarding the interaction between o-aminophenols and the active site of tyrosinase that is in agreement with the obtained experimental results.  相似文献   

17.
N-[5-[N-(2-Amino-5-chloro-3,4-dihydro-4-oxoquinazolin-6-yl)methylamino]-2-thenoyl]-L-glutamic acid (6) and N-[5-[N-(5-chloro-3,4-dihydro-2-methyl-4-oxoquinazolin-6-yl)methylamino]-2-thenoyl]-L-glutamic acid (7), the first reported thiophene analogues of 5-chloro-5,8-dideazafolic acid, were synthesized and tested as inhibitors of tumor cell growth in culture. 4-Chloro-5-methylisatin (10) was converted stepwise to methyl 2-amino-5-methyl-6-chlorobenzoate (22) and 2-amino-5-chloro-3,4-dihydro-6-methyl-4-oxoquinazoline (19). Pivaloylation of the 2-amino group, followed by NBS bromination, condensation with di-tert-butyl N-(5-amino-2-thenoyl)-L-glutamate (28), and stepwise cleavage of the protecting groups with ammonia and TFA yielded. Treatment of 9 with acetic anhydride afforded 2,6-dimethyl-5-chlorobenz[1,3-d]oxazin-4-one (31), which on reaction with ammonia, NaOH was converted to 2,6-dimethyl-5-chloro-3,4-dihydroquinazolin-4-one (33). Bromination of, followed by condensation with and ester cleavage with TFA, yielded. The IC(50) of and against CCRF-CEM human leukemic lymphoblasts was 1.8+/-0.1 and 2.1+/-0.8 microM, respectively.  相似文献   

18.
Tyrosinase inhibitors have become increasingly critical agents in cosmetic, agricultural, and medicinal products. Although a large number of tyrosinase inhibitors have been reported, almost all the inhibitors were unfortunately evaluated by using commercial available mushroom tyrosinase. Here, we examined the inhibitory effects of three isomers of thujaplicin (α, β, and γ) on human tyrosinase and analyzed their binding modes using homology model and docking studies. As the results, γ-thujaplicin was found to strongly inhibit human tyrosinase with the IC50 of 1.15 μM, extremely superior to a well-known tyrosinase inhibitor kojic acid (IC50 = 571.17 μM). MM-GB/SA binding free energy decomposition analyses suggested that the potent inhibitory activity of γ-thujaplicin may be due to the interactions with His367, Ile368, and Val377 (hot spot amino acid residues) in human tyrosinase. Furthermore, the binding mode of α-thujaplicin indicated that Val377 and Ser380 may cause van der Waals clashes with the isopropyl group of α-thujaplicin. These results provide a novel structural insight into the hot spot of human tyrosinase for the specific binding of γ-thujaplicin and a way to optimize not only thujaplicins but also other lead compounds as specific inhibitors for human tyrosinase in a rational manner.  相似文献   

19.
We have investigated oxidation of amino acid phenylhydrazides by mushroom tyrosinase in the presence of 4-tert-butylcatechol and N-acetyl-L-tyrosine. Spectrophotometric measurements showed gradual disappearance of 4-tert-butyl-o-benzoquinone, generated by oxidation of 4-tert-butylcatechol with sodium periodate, after addition of amino acid phenylhydrazides. However, the presence of the phenylhydrazides did not influence the concentration of 4-tert-butyl-o-benzoquinone formed during enzymatic oxidation. Oxygen consumption measurements demonstrated that in a mixture both compounds were oxidized but the reaction rate was proportional to the concentration of the catechol. In the oxidation of N-acetyl-L-tyrosine addition of phenylhydrazides shortened the lag period, indicating that they acted as reducing agents, converting N-acetyl-L-dopaquinone to N-acetyl-L-dopa. In HPLC analysis of the oxidation 4-tert-butylcatechol and the phenylhydrazide of Boc-tryptophan only the N-protected amino acid and 4-tert-butyl-o-benzoquinone were detected as final products. In the presence of the natural substrates the oxidation of amino acid phenylhydrazides required much smaller amounts of the enzyme and was up to 40 times faster than the reaction carried out without these compounds. These results demonstrate that tyrosinase can oxidize phenylhydrazides indirectly through o-quinones. This reaction explains the inhibitory effect of agaritine, a natural amino acid hydrazide, on melanin formation and the inhibitory effects of other hydrazine derivatives on tyrosinase described in the literature.  相似文献   

20.
As most of the available depigmenting agents exhibit only modest activity and some exhibit toxicities that lead to adverse side effects after long-term usage, there remains a need for novel depigmenting agents. Chemical genetic screening was performed on cultured melanocytes to identify novel depigmenting compounds. By screening a tagged-triazine library, we identified four compounds, TGH11, TGD10, TGD39 and TGJ29, as potent pigmentation inhibitors with IC50 values in the range of 10 microM. These newly identified depigmenting compounds were found to function as reversible inhibitors of tyrosinase, the key enzyme involved in melanin synthesis. Tyrosinase was further confirmed as the cellular target of these compounds by affinity chromatography. Kinetic data suggest that all four compounds act as competitive inhibitors of tyrosinase, most likely competing with L-3,4-dihydroxyphenylalanine (L-DOPA) for binding to the DOPA-binding site of the enzyme. No effect on levels of tyrosinase protein, processing or trafficking was observed upon treatment of melanocytes with these compounds. Cytotoxicity was not observed with these compounds at concentrations up to 20 muM. Our data suggest that TGH11, TGD10, TGD39 and TGJ29 are novel potent tyrosinase inhibitors with potential beneficial effects in the treatment of cutaneous hyperpigmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号