首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Mussels were translocated from a shell-fish breeding area (Sète, on the French Mediterranean coast) to sites exposed to trace element inputs in April 2000. They were recovered 3 months later. Whole soft tissues from all of the sites (n = 97) were analysed for arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc. Metallothioneins (MTs) were also measured in the digestive gland and in the remaining tissues (allowing calculation of whole soft tissue concentrations) at 22 of the 97 sites. MT concentrations in the digestive gland and the whole soft tissues were strongly correlated. The condition index varied with food availability at different sites. This did not influenced MT concentrations in the whole soft tissues, whereas the condition index was negatively correlated to trace element concentrations. A model is proposed to minimize this influence of condition. Metal concentrations adjusted using this model showed significant correlations with MT levels for those metals (cadmium, copper, nickel and zinc) that are known to bind to this protein, with the exception of mercury. Even in moderately contaminated sites, measurement of the MT level in the soft tissues of mussels was generally able to discriminate between different levels of contamination, allowing the use of a simplified procedure compared with dissection of the digestive gland. It is recommended to avoid translocation and sampling during the reproductive period, which is well documented for commercial species such as Mytilus sp.  相似文献   

2.
Heavy metal levels of cadmium, copper, mercury, manganese, and zinc were examined in the mummichog, Fundulus heteroditus from industrialized and non-industrialized environments. With one exception, the environment with the highest trace metal in its waters, had the fishes with the highest metal concentration. Except for mercury, the concentration factor varied inversely with the metal concentrations of the fish and water, suggesting a possible regulatory mechanism for metals in the tissues of mummichogs from environments with high metal concentrations. There was an inverse relationship between standard length and concentrations of zinc, manganese, copper and cadmium in whole male and female fishes. The viscera contained significantly greater concentrations of these metals than somatic muscle tissue. There were also significant differences between males and females with respect to whole-body zinc and copper concentrations, but no sex differences for manganese and cadmium.  相似文献   

3.
Levels of nine heavy metals were measured in the livers and salt glands of greater scaup (Aythya marila), black duck (Anas rubripes) and mallard (A. platyrhynchos) from Raritan Bay, New Jersey to determine if the functioning avian salt gland concentrates heavy metals. Heavy metals examined were cadmium, cobalt, chromium, copper, lead, mercury, manganese, nickel and zinc. Heavy metal levels varied significantly by species and tissue for chromium, copper, lead, and manganese, and by tissue for cobalt, mercury, nickel and zinc. In comparing tissues cobalt was higher in the salt glands than in livers of all three species; chromium and nickel were higher in the salt gland than liver for mallard and black duck; and lead, manganese and zinc were higher in the liver than the salt gland in greater scaup. Generally metal levels were higher in the salt gland for mallard and black duck, and in the liver for greater scaup.  相似文献   

4.
Heavy metals in some Chinese herbal plants   总被引:1,自引:0,他引:1  
The concentrations of nine heavy metals, cadmium, cobalt, copper, iron, manganese, nickel, lead, zinc and mercury in 42 Chinese herbal medicinal plants were determined. Generally, all the samples studied had, relative to the other trace metals, higher concentrations of iron, manganese, and zinc. The concentration range of the metals determined was comparable to that in many of the East Asian vegetables and fruits. A few samples were found to contain relatively higher concentrations of the toxic metals such as cadmium, lead, and mercury. This was probably caused by contamination during air-drying and preservation.  相似文献   

5.
Osteoarthritis causes the degradation of the articular cartilage and periarticular bones. Trace elements influence the growth, development and condition of the bone tissue. Changes to the mineral composition of the bone tissue can cause degenerative changes and fractures. The aim of the research was to determine the content of cadmium (Cd), nickel (Ni), copper (Cu) and zinc (Zn) in the tibia, the femur and the meniscus in men and women who underwent a knee replacement surgery. Samples were collected from 50 patients, including 36 women and 14 men. The determination of trace elements content were performed by ICP-AES method, using Varian 710-ES. Average concentration in the tissues of the knee joint teeth amounted for cadmium 0.015, nickel 0.60, copper 0.89 and zinc 80.81 mg/kg wet weight. There were statistically significant differences in the content of cadmium, copper and zinc in different parts of the knee joint. There were no statistically significant differences in the content of cadmium, nickel, copper and zinc in women and men in the examined parts of the knee joint. Among the elements tested, copper and nickel showed a high content in the connective tissue (the meniscus) compared to the bone tissue (the tibia and the femur).  相似文献   

6.
The use of oyster gills for the analytical determination of metallothionein (MT) concentration as a biomarker of metal exposure was investigated. Temporal variations in MT and metal concentrations (which can interfere with inter-site differences) were examined over a 7 month period (from spring to autumn) in Japanese oysters from a clean site (Bay of Bourgneuf, France) and a metal-rich site (Gironde estuary, France) as well as in individuals translocated from the clean to the contaminated area. The ratio between the annual average of MT concentrations in specimens from the clean and the metal-rich sites was 1.3. During the last 3 months of the experiment, significant differences were no longer registered between transplants and residents from the Gironde estuary. Metals concentrations in oyster gills differed consistently between the clean and the metal-rich sites (annual average ratios of 1.5, 2.7 and 9.8, respectively, for zinc, copper and cadmium) and a fast increase in metal concentrations (over a few months) was observed in transplants, mainly for cadmium. MT and soluble metal concentrations were found to be positively and significantly correlated over the period of the study. This relationship is a positive argument for a possible use of gill MT concentration as a biomarker of metal pollution in contrast to previous findings on the digestive gland, there being a smaller amount of seasonal variability in the weight of oyster gills.  相似文献   

7.
This investigation attempts to determine the usefulness of autometallography to localise particular metals in certain key tissues of molluscs exposed to metal mixtures. For this purpose, winkles (Littorina littorea) removed from shell were exposed to very high concentrations of either copper (Cu), zinc (Zn) or a mixture of both metals (Cu&Zn) dissolved in sea-water for short periods of time. Protein-bound metals were detected by autometallography as black silver deposits (BSD) on histological sections of gills, foot, mantle, digestive gland/gonad complex, stomach and kidney. Copper was localised within cytoplasmic granules of gill ciliated cells, nephrocytes and stomach epithelial cells as well as within digestive cell lysosomes. Zinc was essentially found in the basal lamina (histological sense) of gill, stomach, kidney and digestive gland epithelia. BSD were also evidenced in cytoplasmic granules of pore cells present in parenchymal connective tissue of mantle, foot, gill, digestive gland and stomach. Copper and zinc concentrations were additionally calculated for the whole soft body as well as for certain organs by atomic absorption spectrophotometry (AAS). According to AAS, a synergistic phenomenon would contribute to increase the rate of Cu and Zn accumulation in presence of each other. However, after exposure to Cu&Zn autometallography did not evidence any synergistic phenomenon, and Cu and Zn were localised in their respective accumulation sites. In conclusion, autometallography might indicate the presence of certain metals in the environment irrespective of factors, such as "metal-metal interaction-like" phenomena, affecting metal concentrations in soft tissues.  相似文献   

8.
This is the first in-depth investigation of whether the gender or reproductive state of talitrid amphipods affects the bioaccumulation of trace metals. Concentrations of copper, zinc, and cadmium were measured in the beach flea Transorchestia chiliensis (Milne-Edwards) and the sand hopper Talorchestia quoyana (Milne-Edwards) (Amphipoda: Talitridae) from sites in and near the Avon-Heathcote Estuary, Christchurch, New Zealand. For T. chiliensis, the whole body trace metals concentrations (μg g−1) were generally similar for nonbrooding, brooding, and brooding females that had the embryos removed. Where there were differences between female groups (3 out of 15 samples), concentrations in nonbrooding females were below those for brooding females. The trace metal concentrations of separated embryos did not follow those of their mothers. The body zinc concentration was similar for males and females. For copper and cadmium, body concentrations for females were higher than males at the two most contaminated sites. Cadmium body concentrations were similar between sites, and the lowest concentrations were from amphipods from one of the Estuary sites rather than the reference site. In T. quoyana, the trace metal concentrations in nonbrooding female and male sand hoppers were similar for copper and zinc, but cadmium concentrations were higher in nonbrooding females than in males. Copper and zinc concentrations within amphipod body tissues did not reflect those in the sediment or their food. The implications of these results are discussed in relation to previous studies and the use of beach fleas and sand hoppers as metal biomonitors. The beach flea T. chiliensis is recommended as a suitable trace metal biomonitor in New Zealand coastal waters with the potential to be affected by anthropogenic trace metal contamination.  相似文献   

9.
Human peripheral blood lymphocytes have the capacity to produce metallothioneins (MTs) as a protective response to cadmium exposure. To define the range of metal species inducing lymphocyte MTs, cellular proteins synthesized after exposure to each of 11 heavy metals were analyzed by gel electrophoresis. Toxic metals such as cadmium, mercury and silver were found to induce thioneins (apoproteins of MTs) at relatively low concentrations (maximum at approximately 10 microM), whereas less toxic metals such as zinc, copper and nickel were inductive at relatively high concentrations (maximum at approximately 200 microM). Tin, lead, iron, cobalt, and manganese did not induce thioneins. The heavy metal specificity of MT induction in the lymphocyte resembles that in the liver, and the regulatory mechanism of MT production seems to be similar in both of these tissues. In the cells exposed to highly toxic metals such as cadmium and mercury, expression of cytotoxicity (represented by decline of cysteine uptake) was remarkable at the metal concentrations higher than those saturating thionein induction, supporting the protective role of MTs against heavy metals.  相似文献   

10.
Determination of metal levels (copper, zinc, cadmium, silver and mercury) in soluble and insoluble fractions of liver homogenates has been performed after 7 days exposure of carps (Cyprinus carpio) to moderate concentrations of cadmium, silver and mercury in water. Metallothionein (MT) levels have been quantified by a polarographic method before and after the contamination and a subsequent decontamination phase (7 days). The influence of pretreatment by zinc (7 days) has also been evaluated. MT level variations have been interpreted as having regard to inter-related flows of metal between subcellular fractions. Special interest has been focused on heat-stable compound (HSC)-bound heavy metal flows within the cytosol, taking in account that MT is the major component of these ligands. Our data showed differences between the ability of metals to bind cytosolic ligands and HSCs, and their respective potency for MT induction in liver. Regardless of pretreatment, mercury gave the highest increase of liver MT, but the MT level decreased during the decontamination step, especially after pretreatment by zinc. Cadmium and silver gave similar increases, but a significant difference with the control appeared only after the decontamination step with cadmium, while 1 week of contamintion was enough for silver. However, silver binding with MT was achieved only by the end of the decontamination step, while cadmium depicted the highest ratio for HSC-bound toxic metals after the contamination. Our experimental conditions gave the following order of potency for MT induction in liver: mercury silver > cadmium > zinc. Results are discussed comparatively with data obtained with carp gills.  相似文献   

11.
The interaction is reported of selected chemical elements (cadmium, calcium, copper, iron, magnesium, manganese, strontium, and zinc) in cultured sea water, with soft tissues, prismatic calcite of the right valve, and foliated calcite of right and left valves of genetically similar American oysters, Crassostrea virginica (Gmelin) grown in a natural habitat and in two environmentally controlled experimental systems (flow-through and recycle). The addition of trace elements as algal nutrients in ambient sea water was reflected in higher concentrations of trace metals in shells and soft tissues of oysters grown in experimental systems. Calcium was relatively uniformly distributed in major regions of valves from the three habitats, even though its concentration fluctuated widely in sea water in experimental systems. Magnesium and strontium were most concentrated in valves of oysters grown in the recycle system (magnesium in the prismatic layer of the shell and strontium in the foliated calcite). Iron was uniformly distributed. Cadmium, copper, manganese, and zinc were most concentrated in the prismatic calcite of valves from the flow-through system. In soft tissues, calcium was more concentrated in oysters from experimental systems than in those from the natural habitat. Manganese was about equally distributed in soft tissues from the three habitats, whereas copper and iron were more concentrated in soft tissues in experimental systems than in the natural habitat, and were many times more concentrated in soft tissues than in valves from all three habitats. As concentrations of magnesium, strontium, mangenese, zinc, and cadmium increased in valves in experimental systems, pigmentation of valves decreased. The study confirmed the capacity of oysters to concentrate several elements in their valves as concentration of these elements increased in ambient sea water and disclosed the heterogeneous distribution of these elements in major regions of the valves.  相似文献   

12.
Trace element disturbance is often observed in hemodialysis patients. While trace element concentrations have been reported in blood samples from hemodialysis patients, they have not been well investigated in scalp hair. In the present study, 22 trace elemental concentrations were measured by inductively coupled plasma-atomic emission spectrometry in the scalp hair of 80 male hemodialysis patients and compared with those of 100 healthy male subjects. In hemodialysis patients, the concentrations of beryllium, arsenic, magnesium, chromium, manganese, iron, selenium, molybdenum, iodine, vanadium, and cobalt were significantly higher than those in healthy subjects, while lead, mercury, copper, germanium, and bromine were significantly lower than those in the former group. No significant differences were observed for lithium, aluminum, cadmium, zinc, boron, or nickel. There were significant positive correlations between the duration of hemodialysis and the magnesium and manganese concentrations. There was a significant negative correlation between cadmium concentration and the duration of hemodialysis. There were significant positive correlations between dialysis efficacy (Kt/V) and magnesium, manganese, zinc, and selenium concentrations. In conclusion, trace element concentrations of the scalp hair are different between hemodialysis patients and healthy subjects. Essential trace elements, such as magnesium, manganese, zinc, and selenium, may be affected by the duration of hemodialysis and Kt/V.  相似文献   

13.
The Gulf of Paria is bordered by both Trinidad and Venezuela, from which various metallic pollutants and other contaminants can originate. The Gulf is still a significant source of fish, crabs and shellfish for human consumption to both countries, where concerns over the quality of this marine environment have been long expressed but never properly addressed. In addition, the circulatory current patterns in the Gulf ensure that contaminants originating from either country are likely to affect both countries eventually. Heavy metals were determined in oysters (Crassostrea rhizophorae and C. virginica), green mussels (Perna viridis) and sediments from the Gulf of Paria. Samples were obtained at four sites in Trinidad and three sites in Venezuela in the Gulf of Paria, in addition to comparative samples collected from three sites on the north coast of Venezuela. Edible tissues of twelve shellfish from each location were blended and aliquots digested with concentrated nitric acid, for extraction of cadmium, chromium, copper, lead, nickel and zinc. The solutions were analysed by flame atomic absorption spectroscopy. Mercury was extracted with a mixture of nitric, hydrochloric and sulphuric acids and determined by cold vapour atomic absorption. Sediments were oven-dried at 60'C, before being similarly extracted. Results showed that mercury in sediments at all sites in Trinidad and Venezuela exceeded NOAA and Canadian sediment quality guidelines, while cadmium, copper, nickel, lead and zinc also exceeded these guidelines at several sites. Heavy metal levels in oysters and green mussels varied widely with location. However, oysters from the Gulf of Paria contained significantly higher mean levels of cadmium, copper, nickel and zinc than those from the north coast of Venezuela, but this difference was not apparent in mussels. Cadmium, mercury and zinc in sediments were significantly correlated with those of mussels, but not of oysters, in which copper and zinc at several sites in the Gulf of Paria exceeded local maximum permissible levels (Cu = 20 microg g(-1) wet wt; Zn = 50 microg g(-1) wet wt) for human consumption. These findings indicate that while mussels may be better biological indicators of heavy metal pollution in sediments than oysters, the latter may provide copper and zinc contamination. Further research is needed to determine the most appropriate biological indicators of heavy metal and other pollutants in the local marine environment and to develop protocols for their use.  相似文献   

14.
通过皮下注射的方法诱导豚鼠产生金属硫蛋白(MT),研究了重金属元素(Cd)、微量元素(Cu,Zn)及有机试剂(CCl4,在体内可产生自由基)等因素的诱导与豚鼠肝脏中MT不同亚型的含量及金属结合状态的变化关系.实验结果表明,微量元素及有机试剂的诱导可使豚鼠肝脏中MT1的产量明显高于MT2,说明在体内MT1在参与微量元素的储存及清除自由基功能方面比MT2强.在重金属元素诱导下体内MT1对重金属元素的结合量远远大于MT2.表明MT1的重金属解毒能力比MT2强.上述实验结果与对不同亚型MT生物学功能差异的体外研究结果相吻合.此外,无论采用上述何种因素诱导,所得MT中均结合有Cu.对Cu在MT形成过程中的作用也进行了初步探讨.  相似文献   

15.
Most infectious diseases are accompanied by a change in levels of several trace elements in the blood. However, it is not known whether changes in the gastrointestinal uptake of trace elements contribute to this event. Coxsackievirus B3 (CVB3), adapted to Balb/c mice, was used to study whether infection induces gene expression of metallothionein (MT1) and divalent-metal transporter 1 (DMT1) in the intestine and liver and hepcidin in the liver, as well as whether trace elements in these tissues are changed accordingly. Quantitative expression of CVB3, MT1, DMT1 and hepcidin was measured by real-time RT-PCR and six trace elements by ICP-MS on days 3, 6 and 9 of the infection. The copper/zinc (Cu/Zn) ratio in serum increased as a response to the infection. High concentrations of virus were found in the intestine and liver on day 3 and in the intestine on day 6. MT1 in the intestine and liver increased on days 3 and 6. The increase of MT1 in the liver correlated positively with Cu and Zn. Hepcidin in the liver showed a non-significant increase on days 3 and 6 of the infection, whereas DMT1 in the intestine decreased on day 9. Accordingly, iron (Fe) in the liver increased progressively during the disease, whereas in the intestine DMT1 was negatively correlated to Fe. Arsenic (As), cadmium (Cd) and mercury (Hg) were found to decrease to various degrees in the intestine, serum and liver. Thus, enteroviral infections, and possibly many other infections, may cause a change in the gastrointestinal uptake of both non-essential and essential trace elements.  相似文献   

16.
《Inorganica chimica acta》1988,152(2):111-115
A study of the use of the metal chelation properties of Chelex-100 in metal binding reactions of metallothionein (MT), is described. The stoichiometric ratios of bound metals in MT were determined at several stages during a titration in which the Zn(II) in Zn7MT was displaced by Cd(II), by using Chelex-100 to sequester the free zinc. The stoichiometric ratios provide convincing supporting evidence that the complicated circular dichroism spectral properties observed during the titration arise because the incoming cadmium is distributed across both domains in the protein. It is shown that Chelex-100 does not sequester zinc or cadmium directly from the metallothionein binding sites. Use of Chelex-100 over the temperature range −20 to 65 °C is demonstrated. The chelation capacity of Chelex-100 (in terms of μ metal ion/mg resin) has been determined for a range of elements important in metal toxicology, including: cadmium (33 μ), zinc (22 μ), copper (19 μ), silver (38 μ), lead (40 μ) and mercury (40 μ).  相似文献   

17.
Different groups of mice were injected with cadmium, zinc and mercury. Zinc injections had no effect on zinc tissue levels while both mercury and cadmium accumulated in various tissues. Cadmium persisted in the tissues much longer than mercury, and while the mercury concentrations began to decline as soon as dosing ceased, cadmium concentrations in kidney and intestine increased even after dosing ceased. There appeared to be an interrelationship between cadmium concentrations in spleen and intestine which warrants some further investigations. There was a linear, but discontinuous, effect of cadmium on zinc concentrations in liver, kidney and pancreas which may depend on metallothionein biochemistry. Mercury injections had no effect on zinc metabolism. It is proposed that differences in the rate of excretion of cadmium and mercury from the kidney could explain the differential accumulation of cadmium and mercury in animals.  相似文献   

18.
The accumulation of cadmium, copper and lead and their effects on aspartate and alanine aminotransferases in digestive gland, gills, foot and soft body in the clam Ruditapes philippinarum were examined. The animals were exposed to different concentrations: Cd (200–600 μg·l−1), Pb (350–700 μg·l−1) and Cu (10–20 μg·l−1) for 7 days. The highest concentrations were found in digestive gland for cadmium and copper, and in gills for lead, and the lowest values were observed in the foot. Aspartate aminotransferase activity (AST), in general, was not inhibited by cadmium, lead or copper during the exposure. Only in clams exposed to cadmium (600 μg·l−1, 7 days) and copper (20 μg·l−1, 5 days) were observed significant differences (P<0.05) in foot and gills, respectively, with respect to control. In the case of alanine aminotransferase activity (ALT), significant differences were observed for cadmium and lead in treated animals with respect to control. With regard to copper, a decrease in ALT was observed in gills and foot exposed to 20 μg·l−1. A significant correlation (P<0.05) was observed between ALT and metal accumulation for cadmium, copper and lead in gills. In the case of soft body, only cadmium and lead showed a significant correlation. In summary, R. philippinarum can be considered a bioindicator species for cadmium and lead accumulation and ALT could be useful as biomarker of sublethal stress for these metals in soft tissues and gills. Only gills can be considered an adequate target tissue for copper.  相似文献   

19.
In 1985, sampling at 250 stations throughout the St. Marys, St. Clair, and Detroit rivers and Lake St. Clair — the connecting channels of the upper Great Lakes — revealed widespread metal contamination of the sediments. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, and zinc each exceeded U.S. Environmental Protection Agency sediment pollution guidelines at one or more stations throughout the study area. Sediments were polluted more frequently by copper, nickel, zinc, and lead than by cadmium, chromium, or mercury. Sediments with the highest concentrations of metals were found (in descending order) in the Detroit River, the St. Marys River, the St. Clair River, and Lake St. Clair. Although metal contamination of sediments was most common and sediment concentrations of metals were generally highest near industrial areas, substantial contamination of sediments by metals was present in sediment deposition areas up to 60 km from any known source of pollution.Contribution 735 of the National Fisheries Research Center-Great Lakes, U.S. Fish and Wildlife Service, 1451 Green Road, Ann Arbor, MI 48105.  相似文献   

20.
Survey of metal tolerance in moderately halophilic eubacteria   总被引:1,自引:0,他引:1  
The tolerance patterns, expressed as MICs, for 250 moderately halophilic eubacteria to 10 heavy metals were surveyed by using an agar dilution method. The moderate halophiles tested included 12 culture collection strains and fresh isolates representative of Deleya halophila (37 strains), Acinetobacter sp. (24 strains), Flavobacterium sp. (28 strains), and 149 moderately halophilic gram-positive cocci included in the genera Marinococcus, Sporosarcina, Micrococcus, and Staphylococcus. On the basis of the MICs, the collection strains showed, overall, similar responses to silver, cobalt, mercury, nickel, lead, and zinc. All were sensitive to silver, mercury, and zinc and tolerant of lead. The response to arsenate, cadmium, chromium, and copper was very heterogeneous. The metal susceptibility levels of the 238 freshly isolated strains were, in general, very heterogeneous among the four taxonomic groups as well as within the strains included in each group. The highest toxicities were found with mercury, silver, and zinc, while arsenate showed the lowest activity. All these strains were tolerant of nickel, lead, and chromium and sensitive to silver and mercury. Acinetobacter sp. strains were the most heavy-metal tolerant, with the majority of them showing tolerance of eight different metal ions. In contrast, Flavobacterium sp. strains were the most metal sensitive. The influence of salinity and yeast extract concentrations of the culture medium on the toxicity of the heavy metals tested for some representative strains was also studied. Lowering the salinity, in general, led to enhanced sensitivity to cadmium and, in some cases, to cobalt and copper. However, increasing the salinity resulted in only a slight decrease in the cadmium, copper, and nickel toxicities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号