首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Many QTLs for fatness traits have been mapped on pig chromosome 7q1.1-1.4 in various pig resource populations. Eight novel markers, including seven SNPs and one insertion or deletion within BTNL1, COL21A1, PPARD, GLP1R, MDFI, GNMT, ABCC10, and PLA2G7 genes, as well as two previously reported SNPs in SLC39A7 and HMGA1 genes, were genotyped in Large White and Meishan pig breeds. Except for two SNPs in HMGA1 and ABCC10 genes, allele frequencies of the other eight markers are highly significant different between Chinese indigenous Meishan breeds and Large White pig breeds. Eight polymorphic sites were then used for linkage and QTL mapping to refine the fatness QTL in a Large White × Meishan F(2) resource population. Five chromosome-wise significant QTLs were detected, of which the QTLs for leaf fat weight, backfat thickness at 6-7th rib and rump, and mean backfat thickness were narrowed to the interval between PPARD and GLP1R genes and the QTL for backfat thickness at thorax-waist between GNMT and PLA2G7 genes on SSC7p1.1-q1.4.  相似文献   

3.
Several quantitative trait loci (QTL) for important reproductive traits (age of puberty, ovulation rate, nipple number and plasma FSH) have been identified on the long arm of porcine chromosome 10. Bi-directional chromosome painting has shown that this region is homologous to human chromosome 10p. Because few microsatellite or type I markers have been placed on SSC10, we wanted to increase the density of known ESTs mapped in this region of the porcine genome. Genes were chosen for their position on human chromosome 10, sequence availability from the TIGR pig gene indices, and their potential as a candidate gene. The PCR primers were designed to amplify across introns or 3'-UTR to maximize single nucleotide polymorphism (SNP) discovery. Parents of the mapping population (one sire and seven dams) were amplified and sequenced to find informative markers. The SNPs were genotyped using primer extension and mass spectrometry. These amplification products were also used to probe a BAC library (RPCI-44, Roswell Park Cancer Institute) for positive clones and screened for microsatellites. Six genes from human chromosome 10p (AKR1C2, PRKCQ, ITIH2, ATP5C1, PIP5K2A and GAD2) were mapped in the MARC swine mapping population. Gene order was conserved within these markers from centromere to telomere of porcine chromosome 10q, as compared with human chromosome 10p. Four of these genes (PIP5K2A, ITIH2, GAD2 and AKR1C2), which map under QTL, are potential candidate genes. Identification of porcine homologues near important QTL and development of a comparative map for this chromosome will allow further fine- mapping and positional cloning of candidate genes affecting reproductive traits.  相似文献   

4.
Previously, quantitative trait loci (QTL) for tenth-rib backfat (TENTHRIB) and loin eye area (LEA) were identified on pig Chromosome 1 (SSC 1) near microsatellite S0008 from a three-generation Berkshire × Yorkshire cross (BY). This work attempted to refine these QTL positions and identify genes associated with these QTL. Genotypes of BY (n = 555) were determined by PCR-RFLP or PCR tests for 13 polymorphisms identified in BY F0 individuals for candidate genes, BAC end sequences, and genomic clones. Using least-squares regression interval mapping, the LEA QTL was estimated at S0008; the TENTHRIB QTL position was shifted approximately 1 cM downstream from S0008. Of the genes/sequences mapped in the QTL region, CL349415 was significantly associated with TENTHRIB (p = 0.02) and solute carrier family 2, member 12 (SLC2A12) was significantly associated with LEA (p = 0.02). These results suggest that the gene(s) responsible for the LEA and TENTHRIB QTL effects are tightly linked to S0008 or that the high informativeness of S0008 relative to surrounding markers is influencing the QTL position estimates. In addition, janus kinase 2 (JAK2) was mapped to a suggestive LEA QTL region and showed association with LEA (p = 0.009), fatness, color, and pH traits in BY.  相似文献   

5.
6.
Linkage mapping of gene-associated SNPs to pig chromosome 11   总被引:3,自引:0,他引:3  
Single nucleotide polymorphisms (SNPs) were discovered in porcine expressed sequence tags (ESTs) orthologous to genes from human chromosome 13 (HSA13) and predicted to be located on pig chromosome 11 (SSC11). The SNPs were identified as sequence variants in clusters of EST sequences from pig cDNA libraries constructed in the Sino-Danish pig genome project. In total, 312 human gene sequences from HSA13 were used for similarity searches in our pig EST database. Pig ESTs showing significant similarity with HSA13 genes were clustered and candidate SNPs were identified. Allele frequencies for 26 SNPs were estimated in a group of 80 unrelated pigs from Danish commercial pig breeds: Duroc, Hampshire, Landrace and Large White. Eighteen of the 26 SNPs genotyped in the PiGMaP Reference Families were mapped by linkage analysis to SSC11. The EST-based SNPs published here are new genetic markers useful for linkage and association studies in commercial and experimental pig populations. This study represents the first gene-associated SNP linkage map of pig chromosome 11 and adds new comparative mapping information between SSC11 and HSA13. Furthermore, our data facilitate future studies aimed at the identification of interesting regions on pig chromosome 11, positional cloning and fine mapping of quantitative trait loci in pig.  相似文献   

7.
Abstract Statistical methods are developed to estimate gender-specific and gender-average recombination frequencies between a biallelic or multiallelic marker and a sex-influenced gene. Iterative solutions are developed for intercross (or F-2 design). For biallelic markers, two iterative solutions are required, one for coupling and repulsion parental linkage phases and one for mixed parental linkage phases. For multiallelic markers, one set of iterative equations applies to all possible parental linkage phases. The resulting formulae for estimating recombination frequency use the full data set and yield estimates that are exactly the same as the true parameters if the observed and expected phenotypic distributions are equal. When one parent is homozygous for the sex-influenced gene as is expected with the backcross design, simple solutions exist for estimating recombination frequencies. However, offspring of one gender (male or female) do not have linkage information depending on whether the homozygous parent has two male-dominant or male-recessive alleles. Consequently, an F-2 design is more efficient than a backcross design for mapping a sex-influenced gene. Knowing each parental linkage phase is important to apply the methods developed in this article. It is shown that an individual's linkage phase of the sex-influenced locus can be determined based on allele transmission from the parents for all crosses except under the mating between an expressed male and an unexpressed female.  相似文献   

8.
Linkage and RH mapping of the porcine adiponectin gene on chromosome 13   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
Abdominal fat content is an economically important trait in commercially bred chickens. Although many quantitative trait loci (QTL) related to fat deposition have been detected, the resolution for these regions is low and functional variants are still unknown. The current study was conducted aiming at increasing resolution for a region previously shown to have a QTL associated with fat deposition, to detect novel variants from this region and to annotate those variants to delineate potentially functional ones as candidates for future studies. To achieve this, 18 chickens from a parental generation used in a reciprocal cross between broiler and layer lines were sequenced using the Illumina next‐generation platform with an initial coverage of 18X/chicken. The discovery of genetic variants was performed in a QTL region located on chromosome 3 between microsatellite markers LEI0161 and ADL0371 (33 595 706–42 632 651 bp). A total of 136 054 unique SNPs and 15 496 unique INDELs were detected in this region, and after quality filtering, 123 985 SNPs and 11 298 INDELs were retained. Of these variants, 386 SNPs and 15 INDELs were located in coding regions of genes related to important metabolic pathways. Loss‐of‐function variants were identified in several genes, and six of those, namely LOC771163, EGLN1, GNPAT, FAM120B, THBS2 and GGPS1, were related to fat deposition. Therefore, these loss‐of‐function variants are candidate mutations for conducting further studies on this important trait in chickens.  相似文献   

11.
12.
Quantitative trait loci (QTL) for fat deposition, growth and muscling traits have been previously mapped on the basis of low-density linkage maps in a wild boar × Meishan F2 family to the chromosome X region flanked by SW2456 and SW1943 . Improved QTL resolution was possible using data for F2 animals with a marker density of 2.7 cM distance in the SW2456 to SW1943 region, including AR , SERPINA7 and ACSL4 as candidate genes. The resolution of the QTL scan was increased substantially, as evidenced by the higher F -ratio values for all QTL. Maxima of F -ratio values for fat deposition, muscling and growth traits were 28.6, 18.2 and 16.5 respectively, and those QTL positions accounted for 7.9%, 5.0% and 4.5% of the F2 phenotypic variance (VF2) respectively. QTL for fatness and growth and for most muscling traits mapped near ACSL4 , with the exception of the QTL for ham traits that mapped proximally, in the vicinity of AR . An analysis performed separately for F2 male animals showed the predominant QTL affecting fat deposition traits (up to 13.6% VF2) near AR and two QTL for muscling traits (up to 9.9% VF2) mapped close to ACSL4 . In the F2 female animals, QTL affecting muscling (up to 12.1% VF2) mapped at ACSL4 and SW2456 , and QTL for fat deposition (10% VF2) and growth (up to 10.5% VF2) mapped at ACSL4 .  相似文献   

13.
14.
15.
16.
Identification of predictive markers in QTL regions that impact production traits in commercial populations of swine is dependent on construction of dense comparative maps with human and mouse genomes. Chromosomal painting in swine suggests that large genomic blocks are conserved between pig and human, while mapping of individual genes reveals that gene order can be quite divergent. High-resolution comparative maps in regions affecting traits of interest are necessary for selection of positional candidate genes to evaluate nucleotide variation causing phenotypic differences. The objective of this study was to construct an ordered comparative map of human chromosome 10 and pig chromosomes 10 and 14. As a large portion of both pig chromosomes are represented by HSA10, genes at regularly spaced intervals along this chromosome were targeted for placement in the porcine genome. A total of 29 genes from human chromosome 10 were mapped to porcine chromosomes 10 (SSC10) and 14 (SSC14) averaging about 5 Mb distance of human DNA per marker. Eighteen genes were assigned by linkage in the MARC mapping population, five genes were physically assigned with the IMpRH mapping panel and seven genes were assigned on both maps. Seventeen genes from human 10p mapped to SSC10, and 12 genes from human 10q mapped to SSC14. Comparative maps of mammalian species indicate that chromosomal segments are conserved across several species and represent syntenic blocks with distinct breakpoints. Development of comparative maps containing several species should reveal conserved syntenic blocks that will allow us to better define QTL regions in livestock.  相似文献   

17.
Lee KT  Park EW  Moon S  Park HS  Kim HY  Jang GW  Choi BH  Chung HY  Lee JW  Cheong IC  Oh SJ  Kim H  Suh DS  Kim TH 《Genomics》2006,87(2):218-224
On pig chromosome 6, the SW71 microsatellite is located in the region corresponding to several quantitative trait loci (QTL), such as those for intramuscular fat content and for body weight at 4 weeks of age. The genomic sequence of approximately 909 kb was obtained from seven BAC clones encompassing the SW71 region corresponding to human 18q11.21-q11.22. By searching the NCBI GenBank using BLASTX and BLASTN, this 909-kb segment was found to contain eight genes, RAB31, TXNDC2, VAPA, APCDD1, NAPG, FAM38B, C18orf30, and C18orf58, and one putative gene (DN119777). The average G + C content in the sequence of this contig was 45.75% and 33 CpG islands were detected. CpG islands were scattered throughout the region in which most of the putative genes were located. Dense CpG islands of approximately 840 bp were observed, including within the 5' UTR and exon 1 of the orthologs of the RAB31, VAPA, APCDD1, and NAPG genes. Comparative analysis of conserved segments of six species showed that K(a)/K(s) ratios of the TXNDC2 gene in collinear and rearranged segments were significantly different at 4.1 and 1.3, respectively. In conclusion, we demonstrated the genomic organization of pig chromosome 6, including the gene order surrounding SW71, which provides important information for comparative mapping. Moreover, the genes revealed in this study may be positional candidate genes associated with QTL on chromosome 6 that affect fat deposition in pigs.  相似文献   

18.

Background

Tetraena mongolica (Zygophyllaceae), an endangered endemic species in western Inner Mongolia, China. For endemic species with a limited geographical range and declining populations, historical patterns of demography and hierarchical genetic structure are important for determining population structure, and also provide information for developing effective and sustainable management plans. In this study, we assess genetic variation, population structure, and phylogeography of T. mongolica from eight populations. Furthermore, we evaluate the conservation and management units to provide the information for conservation.

Results

Sequence variation and spatial apportionment of the atp B- rbc L noncoding spacer region of the chloroplast DNA were used to reconstruct the phylogeography of T. mongolica. A total of 880 bp was sequenced from eight extant populations throughout the whole range of its distribution. At the cpDNA locus, high levels of genetic differentiation among populations and low levels of genetic variation within populations were detected, indicating that most seed dispersal was restricted within populations.

Conclusions

Demographic fluctuations, which led to random losses of genetic polymorphisms from populations, due to frequent flooding of the Yellow River and human disturbance were indicated by the analysis of BEAST skyline plot. Nested clade analysis revealed that restricted gene flow with isolation by distance plus occasional long distance dispersal is the main evolutionary factor affecting the phylogeography and population structure of T. mongolica. For setting a conservation management plan, each population of T. mongolica should be recognized as a conservation unit.  相似文献   

19.
20.
Linkage mapping of human chromosome 10 microsatellite polymorphisms.   总被引:3,自引:0,他引:3  
R A Decker  J Moore  B Ponder  J L Weber 《Genomics》1992,12(3):604-606
Ten microsatellite DNA polymorphisms located on human chromosome 10 were regionally mapped using subchromosomal somatic cell hybrids and linkage analysis. The resulting order of the markers from pter-qter was [D10S89, D10S111], D10S107, D10S109, [D10S91, D10S110, D10S108, D10S88, D10S168], and D10S169. Order of the markers within brackets was uncertain, although the order given was most likely. The microsatellites were distributed along the chromosome from the proximal p arm to near qter, with an unlinked gap between D10S168 and D10S169.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号