首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pseudouridine (Ψ) are frequently modified residues in RNA. In Eukarya, their formation is catalyzed by enzymes or by ribonucleoprotein complexes (RNPs) containing H/ACA snoRNAs. H/ACA sRNA and putative ORFs for H/ACA sRNP proteins (L7Ae, aCBF5, aNOP10 and aGAR1) were found in Archaea. Here, by using Pyrococcus abyssi recombinant proteins and an in vitro transcribed P.abyssi H/ACA sRNA, we obtained the first complete in vitro reconstitution of an active H/ACA RNP. Both L7Ae and the aCBF5 RNA:Ψ synthase bind directly the sRNA; aCBF5 also interacts directly and independently with aNOP10 and aGAR1. Presence of aCBF5, aNOP10 and a U residue at the pseudouridylation site in the target RNA are required for RNA target recruitment. In agreement, we found that the aCBF5–aNOP10 pair is the minimal set of proteins needed for the formation of a particle active for pseudouridylation. However, particles more efficient in targeted pseudouridylation can be formed with the addition of proteins L7Ae and/or aGAR1. Although necessary for optimal activity, the conserved ACA motif in the sRNA was found to be not essential.  相似文献   

2.
How far do H/ACA sRNPs contribute to rRNA pseudouridylation in Archaea was still an open question. Hence here, by computational search in three Pyrococcus genomes, we identified seven H/ACA sRNAs and predicted their target sites in rRNAs. In parallel, we experimentally identified 17 Ψ residues in P. abyssi rRNAs. By in vitro reconstitution of H/ACA sRNPs, we assigned 15 out of the 17 Ψ residues to the 7 identified H/ACA sRNAs: one H/ACA motif can guide up to three distinct pseudouridylations. Interestingly, by using a 23S rRNA fragment as the substrate, one of the two remaining Ψ residues could be formed in vitro by the aCBF5/aNOP10/aGAR1 complex without guide sRNA. Our results shed light on structural constraints in archaeal H/ACA sRNPs: the length of helix H2 is of 5 or 6 bps, the distance between the ANA motif and the targeted U residue is of 14 or 15 nts, and the stability of the interaction formed by the substrate rRNA and the 3′-guide sequence is more important than that formed with the 5′-guide sequence. Surprisingly, we showed that a sRNA–rRNA interaction with the targeted uridine in a single-stranded 5′-UNN-3′ trinucleotide instead of the canonical 5′-UN-3′ dinucleotide is functional.  相似文献   

3.
Archaeal Pus10 proteins can produce both pseudouridine 54 and 55 in tRNA   总被引:1,自引:0,他引:1  
Gurha P  Gupta R 《RNA (New York, N.Y.)》2008,14(12):2521-2527
Pus10, a recently identified pseudouridine (Ψ) synthase, does not belong to any of the five commonly identified families of Ψ synthases. Pyrococcus furiosus Pus10 has been shown to produce Ψ55 in tRNAs. However, in vitro studies have identified another mechanism for tRNA Ψ55 production in Archaea, which uses Cbf5 and other core proteins of the H/ACA ribonucleoprotein complex, in a guide RNA-independent manner. Pus10 homologs have been observed in nearly all sequenced archaeal genomes and in some higher eukaryotes, but not in yeast and bacteria. This coincides with the presence of Ψ54 in the tRNAs of Archaea and higher eukaryotes and its absence in yeast and bacteria. No tRNA Ψ54 synthase has been reported so far. Here, using recombinant Methanocaldococcus jannaschii and P. furiosus Pus10, we show that these proteins can function as synthase for both tRNA Ψ54 and Ψ55. The two modifications seem to occur independently. Salt concentration dependent variations in these activities of both proteins are observed. The Ψ54 synthase activity of M. jannaschii protein is robust, while the same activity of P. furiosus protein is weak. Probable reasons for these differences are discussed. Furthermore, unlike bacterial TruB and yeast Pus4, archaeal Pus10 does not require a U54•A58 reverse Hoogstein base pair and pyrimidine at position 56 to convert tRNA U55 to Ψ55. The homology of eukaryal Pus10 with archaeal Pus10 suggests that the former may also have a tRNA Ψ54 synthase activity.  相似文献   

4.
5.
Translation of tobacco mosaic virus (TMV) RNA in tobacco protoplasts yields the 17.5-K coat protein, a 126-K protein and a 183-K protein which is generated by an efficient readthrough over the UAG termination codon at the end of the 126-K cistron. In wheat germ extracts, however, only the 5'-proximal 126-K cistron is translated whereas the 183-K readthrough protein is not synthesized. Purification and sequence analysis of the endogenous tyrosine tRNAs revealed that the uninfected tobacco plant contains two tRNAsTyr, both with GΨA anticodons which stimulate the UAG readthrough in vitro and presumably in vivo. In contrast, ˜85% of the tRNATyr from wheat germ contains a QΨA anticodon and ˜15% has a GΨA anticodon. Otherwise the sequences of tRNAsTyr from wheat germ and tobacco are identical. UAG readthrough and hence synthesis of the 183-K protein is only stimulated by tRNATyrGΨA and not at all by tRNATyrQΨA. The tRNAsTyr from wheat leaves were also sequenced. This revealed that adult wheat contains tRNATyrGΨA only. This is very much in contrast to the situation in animals, where Q-containing tRNAs are characteristic for adult tissues whereas Q deficiency is typical for the neoplastic and embryonic state.  相似文献   

6.
7.
8.
In archaeal rRNAs, the isomerization of uridine into pseudouridine (Ψ) is achieved by the H/ACA sRNPs and the minimal set of proteins required for RNA:Ψ-synthase activity is the aCBF5–aNOP10 protein pair. The crystal structure of the aCBF5–aNOP10 heterodimer from Pyrococcus abyssi was solved at 2.1 Å resolution. In this structure, protein aNOP10 has an extended shape, with a zinc-binding motif at the N-terminus and an α-helix at the C-terminus. Both motifs contact the aCBF5 catalytic domain. Although less efficiently as does the full-length aNOP10, the aNOP10 C-terminal domain binds aCBF5 and stimulates the RNA-guided activity. We show that the C-terminal domain of aCBF5 (the PUA domain), which is wrapped by an N-terminal extension of aCBF5, plays a crucial role for aCBF5 binding to the guide sRNA. Addition of this domain in trans partially complement particles assembled with an aCBF5ΔPUA truncated protein. In the crystal structure, the aCBF5–aNOP10 complex forms two kinds of heterotetramers with parallel and perpendicular orientations of the aNOP10 terminal α-helices, respectively. By gel filtration assay, we showed that aNOP10 can dimerize in solution. As both residues Y41 and L48 were needed for dimerization, the dimerization likely takes place by interaction of parallel α-helices.  相似文献   

9.
10.
Modification of nucleotides within an mRNA emerges as a key path for gene expression regulation. Pseudouridine is one of the most common RNA modifications; however, only a few mRNA modifiers have been identified to date, and no one mRNA pseudouridine reader is known. Here, we applied a novel genome-wide approach to identify mRNA regions that are bound by yeast methionine aminoacyl tRNAMet synthetase (MetRS). We found a clear enrichment to regions that were previously described to contain pseudouridine (Ψ). Follow-up in vitro and in vivo analyses on a prime target (position 1074 within YEF3 mRNA) demonstrated the importance of pseudouridine for MetRS binding. Furthermore, polysomal and protein analyses revealed that Ψ1074 mediates translation. Modification of this site occurs presumably by Pus6, a pseudouridine synthetase known to modify MetRS cognate tRNA. Consistently, the deletion of Pus6 leads to a decrease in MetRS association with both tRNAMet and YEF3 mRNA. Furthermore, while global protein synthesis decreases in pus6Δ, translation of YEF3 increases. Together, our data imply that Pus6 ‘writes’ modifications on tRNA and mRNA, and both types of RNAs are ‘read’ by MetRS for translation regulation purposes. This represents a novel integrated path for writing and reading modifications on both tRNA and mRNA, which may lead to coordination between global and gene-specific translational responses.  相似文献   

11.
The hypothetical replicase or replicase subunit cistron in the 5'-proximal part of tobacco mosaic virus (TMV) RNA yields a major 126-K protein and a minor 183-K `readthrough' protein in vivo and in vitro. Two natural suppressor tRNAs were purified from uninfected tobacco plants on the basis of their ability to promote readthrough over the corresponding UAG termination codon in vitro. In a reticulocyte lysate the yield of 183-K readthrough protein increases from ˜10% in the absence of added tobacco plant tRNA up to ˜35% in the case of pure tRNATyr added. Their amino acid acceptance and anticodon sequence (GψA) identifies the two natural suppressor tRNAs as the two normal major cytoplasmic tyrosine-specific tRNAs. tRNATyr1 has an A:U pair at the base of the TψC stem and an unmodified G10, whereas tRNATyr2 contains a G:C pair in the corresponding location and m2G in position 10. This is the first case that, in a higher eukaryote, the complete structure is known of both the natural suppressor tRNAs and the corresponding viral RNA on which they exert their function. The corresponding codon-anticodon interaction, which is not in accordance with the wobble hypothesis, and the possible biological significance of the readthrough phenomenon is discussed.  相似文献   

12.
Cdc34 is an E2 ubiquitin-conjugating enzyme that functions in conjunction with SCF (Skp1·Cullin 1·F-box) E3 ubiquitin ligase to catalyze covalent attachment of polyubiquitin chains to a target protein. Here we identified direct interactions between the human Cdc34 C terminus and ubiquitin using NMR chemical shift perturbation assays. The ubiquitin binding activity was mapped to two separate Cdc34 C-terminal motifs (UBS1 and UBS2) that comprise residues 206–215 and 216–225, respectively. UBS1 and UBS2 bind to ubiquitin in the proximity of ubiquitin Lys48 and C-terminal tail, both of which are key sites for conjugation. When bound to ubiquitin in one orientation, the Cdc34 UBS1 aromatic residues (Phe206, Tyr207, Tyr210, and Tyr211) are probably positioned in the vicinity of ubiquitin C-terminal residue Val70. Replacement of UBS1 aromatic residues by glycine or of ubiquitin Val70 by alanine decreased UBS1-ubiquitin affinity interactions. UBS1 appeared to support the function of Cdc34 in vivo because human Cdc34(1–215) but not Cdc34(1–200) was able to complement the growth defect by yeast Cdc34 mutant strain. Finally, reconstituted IκBα ubiquitination analysis revealed a role for each adjacent pair of UBS1 aromatic residues (Phe206/Tyr207, Tyr210/Tyr211) in conjugation, with Tyr210 exhibiting the most pronounced catalytic function. Intriguingly, Cdc34 Tyr210 was required for the transfer of the donor ubiquitin to a receptor lysine on either IκBα or a ubiquitin in a manner that depended on the neddylated RING sub-complex of the SCF. Taken together, our results identified a new ubiquitin binding activity within the human Cdc34 C terminus that contributes to SCF-dependent ubiquitination.  相似文献   

13.
14.
Park YJ  Yoon SJ  Lee HB 《Journal of bacteriology》2008,190(24):8086-8095
A novel thermostable arylesterase, a 35-kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 94°C and 7.0, respectively. The enzyme displayed remarkable thermostability: it retained 52% of its activity after 50 h of incubation at 90°C. In addition, the purified enzyme showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity besides showing an arylesterase activity toward aromatic esters: it exhibits not only carboxylesterase activity toward tributyrin and p-nitrophenyl esters containing unsubstituted fatty acids from butyrate (C4) to palmitate (C16), but also paraoxonase activity toward organophosphates such as p-nitrophenylphosphate, paraoxon, and methylparaoxon. The kcat/Km ratios of the enzyme for phenyl acetate and paraoxon, the two most preferable substrates among all tested, were 30.6 and 119.4 s−1·μM−1, respectively. The arylesterase gene consists of 918 bp corresponding to 306 amino acid residues. The deduced amino acid sequence shares 34% identity with that of arylesterase from Acinetobacter sp. strain ADP1. Furthermore, we successfully expressed active recombinant S. solfataricus arylesterase in Escherichia coli. Together, our results show that the enzyme is a serine esterase belonging to the A-esterases and contains a catalytic triad composed of Ser156, Asp251, and His281 in the active site.  相似文献   

15.
The 6-phospho-β-glucosidase BglA-2 (EC 3.2.1.86) from glycoside hydrolase family 1 (GH-1) catalyzes the hydrolysis of β-1,4-linked cellobiose 6-phosphate (cellobiose-6′P) to yield glucose and glucose 6-phosphate. Both reaction products are further metabolized by the energy-generating glycolytic pathway. Here, we present the first crystal structures of the apo and complex forms of BglA-2 with thiocellobiose-6′P (a non-metabolizable analog of cellobiose-6′P) at 2.0 and 2.4 Å resolution, respectively. Similar to other GH-1 enzymes, the overall structure of BglA-2 from Streptococcus pneumoniae adopts a typical (β/α)8 TIM-barrel, with the active site located at the center of the convex surface of the β-barrel. Structural analyses, in combination with enzymatic data obtained from site-directed mutant proteins, suggest that three aromatic residues, Tyr126, Tyr303, and Trp338, at subsite +1 of BglA-2 determine substrate specificity with respect to 1,4-linked 6-phospho-β-glucosides. Moreover, three additional residues, Ser424, Lys430, and Tyr432 of BglA-2, were found to play important roles in the hydrolytic selectivity toward phosphorylated rather than non-phosphorylated compounds. Comparative structural analysis suggests that a tryptophan versus a methionine/alanine residue at subsite −1 may contribute to the catalytic and substrate selectivity with respect to structurally similar 6-phospho-β-galactosidases and 6-phospho-β-glucosidases assigned to the GH-1 family.  相似文献   

16.
The pSSVx genetic element from Sulfolobus islandicus REY15/4 is a hybrid between a plasmid and a fusellovirus, able to be maintained in non-integrative form and to spread when the helper SSV2 virus is present in the cells. In this work, the satellite virus was engineered to obtain an Escherichia coliSulfolobus solfataricus shuttle vector for gene transfer and expression in S.solfataricus by fusing site-specifically the pSSVx chromosome with an E.coli plasmid replicon and the ampicillin resistance gene. The pSSVx-based vector was proven functional like the parental virus, namely it was able to spread efficiently through infected S.solfataricus cells. Moreover, the hybrid plasmid stably transformed S.solfataricus and propagated with no rearrangement, recombination or integration into the host chromosome. The high copy number of the artificial genetic element was found comparable with that calculated for the wild-type pSSVx in the new host cells, with no need of genetic markers for vector maintenance in the cells and for transfomant enrichment.

The newly constructed vector was also shown to be an efficient cloning vehicle for the expression of passenger genes in S.solfataricus. In fact, a derivative plasmid carrying an expression cassette of the lacS gene encoding the β-glycosidase from S.solfataricus under the control of the Sulfolobus chaperonine (thermosome tf55) heat shock promoter was also able to drive the expression of a functional enzyme. Complementation of the β-galactosidase deficiency in a deletion mutant strain of S.solfataricus demonstrated that lacS gene was an efficient marker for selection of single transformants on solid minimal lactose medium.

  相似文献   

17.
Pseudouridine (Ψ) located at position 55 in tRNA is a nearly universally conserved RNA modification found in all three domains of life. This modification is catalyzed by TruB in bacteria and by Pus4 in eukaryotes, but so far the Ψ55 synthase has not been identified in archaea. In this work, we report the ability of two distinct pseudouridine synthases from the hyperthermophilic archaeon Pyrococcus furiosus to specifically modify U55 in tRNA in vitro. These enzymes are pfuCbf5, a protein known to play a role in RNA-guided modification of rRNA, and pfuPsuX, a previously uncharacterized enzyme that is not a member of the TruB/Pus4/Cbf5 family of pseudouridine synthases. pfuPsuX is hereafter renamed pfuPus10. Both enzymes specifically modify tRNA U55 in vitro but exhibit differences in substrate recognition. In addition, we find that in a heterologous in vivo system, pfuPus10 efficiently complements an Escherichia coli strain deficient in the bacterial Ψ55 synthase TruB. These results indicate that it is probable that pfuCbf5 or pfuPus10 (or both) is responsible for the introduction of pseudouridine at U55 in tRNAs in archaea. While we cannot unequivocally assign the function from our results, both possibilities represent unexpected functions of these proteins as discussed herein.  相似文献   

18.
2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine formed during the combustion of tobacco. AαC undergoes bioactivation to form electrophilic N-oxidized metabolites that react with DNA to form adducts, which can lead to mutations. Many genotoxicants and toxic electrophiles react with human serum albumin (albumin); however, the chemistry of reactivity of AαC with proteins has not been studied. The genotoxic metabolites, 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC), 2-nitroso-9H-pyrido[2,3-b]indole (NO-AαC), N-acetyloxy-2-amino-9H-pyrido[2,3-b]indole (N-acetoxy-AαC), and their [13C6]AαC-labeled homologues were reacted with albumin. Sites of adduction of AαC to albumin were identified by data-dependent scanning and targeted bottom-up proteomics approaches employing ion trap and Orbitrap MS. AαC-albumin adducts were formed at Cys34, Tyr140, and Tyr150 residues when albumin was reacted with HONH-AαC or NO-AαC. Sulfenamide, sulfinamide, and sulfonamide adduct formation occurred at Cys34 (AαC-Cys34). N-Acetoxy-AαC also formed an adduct at Tyr332. Albumin-AαC adducts were characterized in human plasma treated with N-oxidized metabolites of AαC and human hepatocytes exposed to AαC. High levels of N-(deoxyguanosin-8-yl)-AαC (dG-C8-AαC) DNA adducts were formed in hepatocytes. The Cys34 was the sole amino acid of albumin to form adducts with AαC. Albumin also served as an antioxidant and scavenged reactive oxygen species generated by metabolites of AαC in hepatocytes; there was a strong decrease in reduced Cys34, whereas the levels of Cys34 sulfinic acid (Cys-SO2H), Cys34-sulfonic acid (Cys-SO3H), and Met329 sulfoxide were greatly increased. Cys34 adduction products and Cys-SO2H, Cys-SO3H, and Met329 sulfoxide may be potential biomarkers to assess exposure and oxidative stress associated with AαC and other arylamine toxicants present in tobacco smoke.  相似文献   

19.
So far, four RNA:pseudouridine (Ψ)-synthases have been identified in yeast Saccharomyces cerevisiae. Together, they act on cytoplasmic and mitochondrial tRNAs, U2 snRNA and rRNAs from cytoplasmic ribosomes. However, RNA:Ψ-synthases responsible for several U→Ψ conversions in tRNAs and UsnRNAs remained to be identified. Based on conserved amino-acid motifs in already characterised RNA:Ψ-synthases, four additional open reading frames (ORFs) encoding putative RNA:Ψ-synthases were identified in S.cerevisiae. Upon disruption of one of them, the YLR165c ORF, we found that the unique Ψ residue normally present in the fully matured mitochondrial rRNAs (Ψ2819 in 21S rRNA) was missing, while Ψ residues at all the tested pseudouridylation sites in cytoplasmic and mitochondrial tRNAs and in nuclear UsnRNAs were retained. The selective U→Ψ conversion at position 2819 in mitochondrial 21S rRNA was restored when the deleted yeast strain was transformed by a plasmid expressing the wild-type YLR165c ORF. Complementation was lost after point mutation (D71→A) in the postulated active site of the YLR165c-encoded protein, indicating the direct role of the YLR165c protein in Ψ2819 synthesis in mitochondrial 21S rRNA. Hence, for nomenclature homogeneity the YLR165c ORF was renamed PUS5 and the corresponding RNA:Ψ-synthase Pus5p. As already noticed for other mitochondrial RNA modification enzymes, no canonical mitochondrial targeting signal was identified in Pus5p. Our results also show that Ψ2819 in mitochondrial 21S rRNA is not essential for cell viability.  相似文献   

20.
Among glycosaminoglycan (GAG) biosynthetic enzymes, the human β1,4-galactosyltransferase 7 (hβ4GalT7) is characterized by its unique capacity to take over xyloside derivatives linked to a hydrophobic aglycone as substrates and/or inhibitors. This glycosyltransferase is thus a prime target for the development of regulators of GAG synthesis in therapeutics. Here, we report the structure-guided design of hβ4GalT7 inhibitors. By combining molecular modeling, in vitro mutagenesis, and kinetic measurements, and in cellulo analysis of GAG anabolism and decorin glycosylation, we mapped the organization of the acceptor binding pocket, in complex with 4-methylumbelliferone-xylopyranoside as prototype substrate. We show that its organization is governed, on one side, by three tyrosine residues, Tyr194, Tyr196, and Tyr199, which create a hydrophobic environment and provide stacking interactions with both xylopyranoside and aglycone rings. On the opposite side, a hydrogen-bond network is established between the charged amino acids Asp228, Asp229, and Arg226, and the hydroxyl groups of xylose. We identified two key structural features, i.e. the strategic position of Tyr194 forming stacking interactions with the aglycone, and the hydrogen bond between the His195 nitrogen backbone and the carbonyl group of the coumarinyl molecule to develop a tight binder of hβ4GalT7. This led to the synthesis of 4-deoxy-4-fluoroxylose linked to 4-methylumbelliferone that inhibited hβ4GalT7 activity in vitro with a Ki 10 times lower than the Km value and efficiently impaired GAG synthesis in a cell assay. This study provides a valuable probe for the investigation of GAG biology and opens avenues toward the development of bioactive compounds to correct GAG synthesis disorders implicated in different types of malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号