首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fifteen nulliparous and nine multiparous Serrana goats were used, through two successive oestrous cycles, in order to characterize their ovulation time with regard to the number of ovulations after induced and natural oestrus during the breeding season. The onset of oestrus was detected by the amount of vasectomized bucks after oestrus synchronization with prostaglandin, given 10 days apart, and in the following two expected natural oestrus. The preovulatory LH peak was determined from blood samples collected 0, 4, 8, 12, 16, 20 and 24 h after onset of oestrus. A transrectal ovarian ultrasound scanning was performed 20, 24, 28, 32, 36, 40, 44 and 60 h after onset of oestrus, for the detection of ovulations by means of the disappearance of large follicles (>4 to 5 mm). Single ovulations were observed in 76% of oestrous periods in nulliparous goats and in 18% of nulliparous goats. The onset of oestrus to LH peak interval was lower in nulliparous (12.1 ± 0.9 h, n = 38) than in multiparous (15.6 ± 1.0 h, n = 22, P < 0.05) goats with no oestrus interaction effects (P > 0.05). The LH peak to first ovulation interval was higher after natural (18.9 ± 0.7 h, n = 36) than after induced (15.8 ± 1.2 h, n = 24, P < 0.05) oestrus. The onset of oestrus to total ovulation interval was influenced by parity (P < 0.01) and oestrus type (P < 0.05) with a length of 30.1 ± 1.1 h (n = 15) and 33.4 ± 1.5 h (n = 9) for induced oestrus of nulliparous and multiparous goats, respectively, and 32.5 ± 1.0 h (n = 23) and 36.5 ± 1.1 h (n = 13) for natural oestrus of nulliparous and multiparous goats, respectively. The onset of oestrus to first ovulation interval was not influenced by parity, but an interval of 8.0 ± 1.6 h was observed between the first and second ovulations in polyovulatory oestrus. Consequently, nulliparous goats that are predominantly monovular ovulate earlier than multiparous goats that are predominantly polyovulatory. In conclusion, significant differences occurred in the number and time of ovulations between nulliparous and multiparous goats. More research is necessary for a deeper understanding of the mechanisms regulating monovularory and polyovulatory oestrous cycles regarding the parity of goats.  相似文献   

2.
The effects of active immunization against progesterone on reproductive activity were studied in Merino ewes. Immunization against progesterone caused a shortening (P less than 0.01) of the interval between ovulations from 17-18 days (controls) to between 6 and 10 days (immunized group); this was associated with a corresponding reduction in the interval between LH surges. The immunized ewes also had higher (P less than 0.05) ovulation rates (1.72) than controls (1.25) and exhibited a reduced (P less than 0.01) incidence of oestrus (26% v. 95%). Many immunized ewes continued to ovulate despite the persistence of corpora lutea from earlier ovulations which led to an accumulation on the ovaries of many corpora lutea of different ages. The frequency of LH pulses in ewes immunized against progesterone (1.8 +/- 0.2 pulses/4 h) was significantly (P less than 0.001) higher than that of control ewes (0.3 +/- 0.1 pulses/4 h). This study highlights the importance of progesterone in the control of oestrus, ovulation, ovulation rate, luteal regression and the secretion of LH in the ewe.  相似文献   

3.
Ovulation rate, median time to first ovulation, median time of all ovulations and median time from first to last ovulation were studied by repeated laparoscopy in Merino ewes. Treatments with FSH or PMSG significantly affected ovulation rate (8.4 +/- 0.81 and 7.3 +/- 1.21 respectively, P less than 0.05) and in median time of all ovulations (60 and 54 h respectively after progestagen sponge removal, P less than 0.05). Differences in the median time to first ovulation (60 and 48 h) and median time from first to last ovulation (6 and 6 h) for the respective treatments were not significant. The synchrony of ovulation after both treatments was adversely affected by (1) the occurrence of premature ovulations before the onset of superovulation, (2) variability in the time of commencement of superovulation, and (3) variability in the time from first to last ovulation. Administration of GnRH synchronized the timing of ovulation with both gonadotrophin treatments. This synchrony was due to a reduction in the period during which superovulation began and in the interval from first to last ovulation. The median time of all ovulations was significantly less with FSH + GnRH than with PMSG + GnRH (45 and 48 h after progestagen sponge removal, respectively, P less than 0.05). Administration of GnRH at 16, 20 or 24 h after progestagen sponge removal significantly affected all traits examined except ovulation rate. Administration at 20 and 24 h produced an equally good synchrony of ovulation which was better than that obtained at 16 h. We suggest that the use of GnRH in embryo collection programmes appears justified and is likely to improve embryo yields due to improved rates of fertilization.  相似文献   

4.
In the ewe, a rise in circulating concentrations of FSH preceding follicular wave emergence begins in the presence of growing follicles from a previous wave. We hypothesized that prostaglandin F(2alpha) (PGF(2alpha)) given at the time of an endogenous FSH peak in cyclic ewes would result in synchronous ovulation of follicles from two consecutive waves, increasing ovulation rate. Twelve Western White Face (WWF) ewes received a single i.m. injection of PGF(2alpha) (15 mg/ewe) at the expected time of a peak in FSH secretion, from Days 9 to 12 after ovulation. The mean ovulation rate after PGF(2alpha) treatment (2.3+/-0.3) did not differ (P>0.05) from the pre-treatment ovulation rate (1.7+/-0.1). Five ewes ovulated follicles from follicular waves emerging before and after PGF(2alpha) injection (3.0+/-0.6 ovulations/ewe) and seven ewes ovulated follicles only from a wave(s) emerging before PGF(2alpha) treatment (2.0+/-0.3 ovulations/ewe; P>0.05). The mean interval from PGF(2alpha) to emergence of the next follicular wave (1.0+/-0.4 and 4.0+/-0.0 d, respectively; P<0.001) and the interval from PGF(2alpha) treatment to the next FSH peak (0 and 3.5+/-0.4d, respectively; P<0.05) differed between the two groups. Six ewes ovulated after the onset of behavioral estrus, with a mean ovulation rate of 1.7+/-0.2, and six ewes ovulated both before and after the onset of estrus (3.0+/-0.5 ovulations/ewe; P<0.05). None of the ovulations that occurred before estrus resulted in corpora lutea (CL) with a full life span. At 24h before ovulation, follicles ovulating before or after the onset of estrus differed in size (4.1+/-0.3 or 5.5+/-0.4mm, respectively; P<0.05) and had distinctive echotextural characteristics. In conclusion, the administration of PGF(2alpha) at the expected time of an FSH peak at mid-cycle in ewes may alter the endogenous rhythm of FSH secretion and was not consistently followed by ovulation of follicles from two follicular waves. In non-prolific WWF ewes, PGF(2alpha)-induced luteolysis disrupted the normal distribution of the source of ovulatory follicles and may be associated with untimely follicular rupture and luteal inadequacy.  相似文献   

5.
After lambing forty-five ewes were allocated to three groups, two of sixteen and one of thirteen ewes. The lambs of the two groups of sixteen ewes were weaned on Day 1 after lambing and the ewes were fed a diet of 100% (Group H) or 50% (Group R) of maintenance energy requirements. The thirteen ewes in the third group (Group L) suckled twin lambs and were fed freely. During the first 3 weeks after lambing, oestrus was observed for 11/16 (Group H) and 8/16 (Group R) ewes; of the ewes which had shown oestrus in the two groups, ovulation occurred in 5/8 and 5/7 respectively. Only 1/13 Group-L ewes showed oestrus and ovulated during the same period. The mean plasma concentrations of progesterone and LH were unaffected by the treatments and were around 0-4 and 1-5 ng/ml, respectively. Restricted feeding had no effect on oestrus, ovulation or the hormone levels during the oestrus cycle following synchronization. The onset of oestrus and the start of the preovulatory discharge of LH were 3 and 6 hr later, respectively, in the lactating ewes (Group L) than in those in Groups H and R. Ewes in Group L also had a higher ovulation rate, 2-8 +/- 0-2 versus 2-1 +/- 0-2 (P less than 0-05). Restricted feeding reduced the number of ewes lambing; only 1/11 ewes in Group R, considered to have conceived because of the presence of high progesterone levels 17 days after mating, subsequently lambed compared with 6/12 in Group H and 5/9 in Group L.  相似文献   

6.
Romney ewes were injected intramuscularly once or twice daily for 3 days with 0, 0.1, 0.5, 1 or 5 ml of bovine follicular fluid (bFF) treated with dextran-coated charcoal, starting immediately after injection of cloprostenol to initiate luteolysis on Day 10 of the oestrous cycle. There was a dose-related suppression of plasma concentrations of FSH, but not LH, during the treatment period. On stopping the bFF treatment, plasma FSH concentrations 'rebounded' to levels up to 3-fold higher than pretreatment values. The mean time to the onset of oestrus was also increased in a dose-related manner by up to 11 days. The mean ovulation rates of ewes receiving 1.0 ml bFF twice daily (1.9 +/- 0.2 ovulations/ewe, mean +/- s.e.m. for N = 34) or 5.0 ml once daily (2.0 +/- 0.2 ovulations/ewe, N = 25) were significantly higher than that of control ewes (1.4 +/- 0.1 ovulations/ewe, N = 35). Comparison of the ovaries of ewes treated with bFF for 24 or 48 h with the ovaries of control ewes revealed no differences in the number or size distribution of antral follicles. However, the large follicles (greater than or equal to 5 mm diam.) of bFF-treated ewes had lower concentrations of oestradiol-17 beta in follicular fluid, contained fewer granulosa cells and the granulosa cells had a reduced capacity to aromatize testosterone to oestradiol-17 beta and produce cyclic AMP when challenged with FSH or LH. No significant effects of bFF treatment were observed in small (1-2.5 mm diam.) or medium (3-4.5 mm diam.) sized follicles. Ewes receiving 5 ml bFF once daily for 27 days, from the onset of luteolysis, were rendered infertile during this treatment period. Oestrus was not observed and ovulation did not occur. Median concentrations of plasma FSH fell to 20% of pretreatment values within 2 days. Thereafter they gradually rose over the next 8 days to reach 60% of pretreatment values where they remained for the rest of the 27-day treatment period. Median concentrations of plasma LH increased during the treatment period to levels up to 6-fold higher than pretreatment values. When bFF treatment was stopped, plasma concentrations of FSH and LH quickly returned to control levels, and oestrus was observed within 2 weeks. The ewes were mated at this first oestrus and each subsequently delivered a single lamb.  相似文献   

7.
In late February Dorset rams were introduced (day = 0) to 40 mature Romney ewes that were observed by laparoscopy to be anovular. The ovaries of 20 of these ewes were examined by laparoscopy every second day while the remaining 20 ewes served as unoperated controls. Jugular blood samples were taken daily and plasma progesterone concentrations assayed to provide information on the functional status of any corpora lutea (CL) arising from ovulations stimulated by introduction of the rams. Eighty-five percent (-17/20) of the ewes that were repeatedly laparoscoped had ovulated within 4 days of ram introduction and premature regression of the CL had occurred between days 4 and 8 in 8 ewes and days 6 to 10 in 2 ewes. A second ovulation was observed after or during the premature regression of the first CL and this subsequent CL was maintained for the normal duration. The prematurely regressing CL produced a small peak in progesterone concentration on days 4 to 5 but the concentrations declined on days 6 to 7. In the unoperated ewes 50% (-10/20) appeared, from the progesterone profiles, to have ovulated by day 4 and half of these appeared to have premature CL regression. The interval from introduction of the ram to first oestrus was 23 days in ewes with premature regression of the CL and 19 days in ewes ovulating within 4 days but having no premature regression. From the results it was concluded that the premature regression of the CL is the cause of the delayed interval from ram introduction to first oestrus in Romney ewes and is a major factor contributing to the two peaks of oestrous activity observed after ram introduction.  相似文献   

8.
The hypothesis that, in the ewe, prostaglandin (PG) F2alpha administration on day 3 after ovulation is followed by luteolysis and ovulation was tested using 24 animals. The ewes were treated with a dose of a PGF2alpha analogue (delprostenate, 160 microg) on days 1 (n=8), 3 (n=8) or 5 (n=8) after ovulation, was established by transrectal ultrasonography. Daily scanning and blood sampling were performed to determine ovarian changes and progesterone serum concentrations by radioinmunoassay. The treatment induced a sharp decrease of progesterone concentrations followed by oestrus and ovulation in all ewes treated on days 3 and 5 and in one ewe treated on day 1 (8/8, 8/8, 1/8; P<0.05). Seven ewes treated on day 1 did not respond to PGF2alpha treatment and had an inter-ovulatory cycle of normal length (17.4 +/- 0.5 days). However, the profile of progesterone concentrations during the cycle of these ewes was delayed 1 day (P<0.05) compared with a control cycle. The overall interval between PGF2alpha and oestrus for the 17 responding ewes was 42.4 +/- 2.3 h. In 15 of these ewes the ovulatory follicle was originated from the first follicular wave and the ovulation occurred at 60.8 +/- 1.8 h after PGF2alpha treatment. The other two responding ewes ovulated an ovulatory follicle originated from the second follicular wave between 72 and 96 h after treatment. These results support the hypothesis and suggest that refractoriness to PGF2alpha of the recently formed corpus luteum (CL) may be restricted to the first 1-2 days post-ovulation.  相似文献   

9.
Two methods for the determination of ovulation were compared to one ultrasonography performed 5 times a day. Time of ovulation by echography was 40 +/- 5.8 h (mean +/- SD) after the onset of oestrus. Preovulatory LH rise (two blood samples per day) began near the onset of oestrus but, in our conditions, this parameter could not be used to predict ovulation. The basal level of progesterone (two blood samples per day) was determined with a non-linear model, the timing when progesterone rose more than one SD (0.3 ng x mL(-1)) coincided with the timing of ovulation determined by echography (R2 = 0.98). This method was efficient and was used in a field trial to measure the consequences of the variability of the interval between Al and ovulation on litter size. The interval between Al and ovulation had an effect on litter size; litter size decreased by one piglet when this interval increased by 10h.  相似文献   

10.
Duration of oestrus, time of ovulation and hormone profiles for progesterone and LH in prepubertal, pubertal and mature Javanese thin-tail sheep were studied at synchronized oestrus following progestagen-PMSG treatment and at the first natural oestrus after synchronization.The ewe lambs responded to progestagen-PMSG treatment by showing earlier onset of oestrus and an earlier and higher peak of LH concentration than mature ewes. For pre-pubertal, pubertal and mature ewes the mean LH peaks were 49.9, 43.9 and 37.9 ng/ml (P>0.05) at mean intervals of 7.5, 8.4 and 16.5 h (P < 0.05), respectively, after onset of oestrus. Duration of oestrus was 41.2 h in pubertal lambs and averaged 37.5 h in the other two groups (P>0.05). Except in one mature ewe, ovulation occurred between 24 and 36 h after onset of oestrus and the majority ovulated at around the end of oestrus. The corpora lutea developed normally, as indicated by plasma-progesterone changes. The patterns of plasma-progesterone changes were similar in all three groups, though the concentrations were lower in the ewe lambs.At the first natural oestrus after synchronization, mature ewes showed longer (P>0.05) oestrus (31.5 vs. 24.3 h), longer time interval from onset of oestrus to the LH peak (16.0 vs. 12.0 h) and from the LH peak to ovulation (21.0 vs. 19.6 h) than peri-pubertal lambs. Six of eight pre-pubertal lambs did not ovulate at their first natural oestrus, resulting in a conception rate of 11% for that group, while in pubertal lambs and mature ewes conception rates were 70% and 100%, respectively.  相似文献   

11.
Amir D  Gacitua H 《Theriogenology》1987,27(2):377-382
The first ovulation in 20 Assaf ewes and the first estrus in 54 out of 77 Assaf ewes after the October lambings occurred at mean intervals of 26 +/- 1.7 and 50 +/- 1.5 d postpartum, respectively. After the February lambings, nine out of 20 examined ewes had their first ovulation and estrus 35 +/- 2.5 and 71 +/- 7.7 d postpartum, respectively, and resumed normal cyclic activity in April. Five animals showed considerable ovarian activity but only occasional estrous activity during spring, while the remaining six ewes had a 6-to 7-mo-long anestrous season during which only occasional ovulations were detected in three of them.  相似文献   

12.
Frequent rectal ultrasound is often used to assess time of ovulation. This study investigated whether frequent rectal ultrasound examination, affects behavioural oestrus and peri-ovulatory hormone profiles (LH, oestradiol and progesterone). Additionally, the relation between peri-ovulatory hormone profiles, oestrous behaviour and time of ovulation was studied. Oestrus was synchronised in two consecutive cycles of Holstein Friesian cattle (parity from 1 to 6; n = 24 cycles). In 12 of these cycles, time of ovulation was assessed by three-hourly rectal ultrasound (assessment of ovulation time with ultrasound group: UG) the other half served as controls (n = 12; no assessment of ovulation time group: CG). There were no significant differences between the onset of oestrus (33.8 +/- 1.6 h), duration of oestrus (13.4 +/- 0.9 h) or intensity of oestrous behaviour (1047 +/- 180 points) between UG and CG treated animals. Furthermore, LH, oestradiol and progesterone profiles were similar between UG and CG. For UG, ovulation took place 30.2 +/- 1.9 h after onset of oestrus. This interval had the largest variation (21 h) of all parameters studied, ranging between 19 and 40 h after onset of oestrus. The smallest variation (6 h) was found in the timing of ovulation in relation to the LH-peak; ovulation took place 25.3 +/- 0.6 h (range: 21.5-27.5 h) after the peak in LH. This study demonstrated that repeated rectal ultrasound does not alter behavioural oestrus or peri-ovulatory hormone profiles and is therefore a useful tool for assessing time of ovulation. Further research, using ultrasound, can now be carried out to find predictors for time of ovulation.  相似文献   

13.
Thirty-two beef heifers were induced to superovulate by the administration of follicle stimulating hormone-porcine (FSH-P). All heifers received 32 mg FSH-P (total dose) which was injected twice daily in decreasing amounts for 4 d commencing on Days 8 to 10 of the estrous cycle. Cloprostenol was administered at 60 and 72 h after the first injection of FSH-P. Heifers were observed for estrus every 6 h and were slaughtered at known times between 48 to 100 h after the first cloprostenol treatment. The populations of ovulated and nonovulated follicles in the ovaries were quantified immediately after slaughter. Blood samples were taken at 2-h intervals from six heifers from 24 h after cloprostenol treatment until slaughter and the plasma was assayed for luteinizing hormone (LH) concentrations. The interval from cloprostenol injection to the onset of estrus was 41.3 +/- 1.25 h (n = 20). The interval from cloprostenol injection to the preovulatory peak of LH was 43.3 +/- 1.69 h (n = 6). No ovulations were observed in animals slaughtered prior to 64.5 h after cloprostenol (n = 12). After 64.5 h, ovulation had commenced in all animals except in one animal slaughtered at 65.5 h. The ovulation rate varied from 4 to 50 ovulations. Approximately 80% of large follicles (> 10 mm diameter) had ovulated within 12 h of the onset of ovulation. Onset of ovulation was followed by a dramatic decrease in the number of large follicles (> 10 mm) and an increase in the number of small follicles (相似文献   

14.
The mean duration of oestrus, ovulation rate, duration of the preovulatory LH discharge, time interval between sponge removal and beginning of the LH discharge, total LH discharged, maximum LH value observed and the concentration of progesterone in the peripheral plasma during the luteal phase of the oestrous cycle was similar in Galway adult ewes and 8-month-old ewe lambs after treatment with intravaginal sponges containing 30 mg cronolone for 12 days and injection of 500 i.u. PMSG. The interval between sponge removal and the onset of oestrus was shorter for adults than for ewe lambs; the interval between the onset of oestrus and the beginning of the LH discharge was longer in adults. During the period 12-36 h after sponge removal the mean plasma total oestrogen concentration was significantly higher in lambs than in adults. In a separate study of the time of ovulation in Galway ewe lambs given the same progestagen-PMSG treatment, ovulation did not occur in any lamb before 17 h after the onset of oestrus and the majority ovulated close to the end of oestrus.  相似文献   

15.
The release of LH from the pituitary of lactating ewes was studied. In Exp. 1, ewes were injected with 50 microng oestradiol benzoate (OB), 2-0 mg testosterone propionate (TP) or oil only (control) on days 5, 10, or 20 after lambing. LH was measured in peripheral plasma samples obtained 20-38 h after treatment, and the ovulations were recorded. The number of ewes in which an LH release was detected, and the amount released, declined between Day 5 and 20 after OB treatment but increased after TP treatment. The releases of LH were not always accompanied by ovulation and the incidence of ovulation was higher in ewes treated with TP. In Exp. 2, lactating ewes were injected with 1 or 5 (at 2-h intervals) doses of 50 microng Gn-RH, on Days 12 or 25 after lambing. LH was measured in peripheral plasma samples collected every 2 h for 10 h and every 3 h for a further 70 h. Release of LH occurred in all ewes, the amount being greater in ewes receiving multiple injections and in ewes treated on Day 25. The incidence of ovulation was higher after treatment on Day 25. Multiple injections of Gn-RH appeared to reduce the incidence of abnormal corpora lutea.  相似文献   

16.
The duration of oestrus and the time interval from removal of progestagen-impregnated pessaries to the onset and end of oestrus were examined in Texel, Finnish Landrace, Galway and Fingalway (Finnish Landrace X Galway) ewes. The differences among the breeds in the relationship between these variables and ovulation rate at the controlled oestrus were also investigated. Breed differences were significant for all traits except the interval from pessary withdrawal to the onset of oestrus. The relationship between ovulation rate and both the interval from pessary withdrawal to the onset of oestrus and the duration of oestrus differed significantly among the breeds. The repeatability of the duration of oestrus was significant for Texel and Rambouillet ewes (mean = 0.5) and for pooled data from ewe lambs of various breeds. It was concluded that, in view of the breed differences in the relationship between ovulation rate and duration of oestrus and other traits, generalizations should not be made from among-breed to within-breed relationships. The high repeatability for the duration of oestrus may mean substantial heritabilities for the physiological determinants of oestrus duration.  相似文献   

17.
The objective of this study was to investigate the relationship of different behavioral estrous signs and time of ovulation to identify if behavioral estrous sign(s) can be used as predictor of time of ovulation in mithuns. Data were collected for 54 ovulations from 16 mithuns. The animals were monitored for onset of estrus by observing different behavioral estrous signs at 2 h interval and bull parading thrice a day for 30 min and were further confirmed by plasma progesterone profile. All animals were also observed for any of the estrous signs at every 2 h interval for 30 min and mounting behavior was studied by bull parading at every 2 h for 30 min after onset of estrus. Time of ovulation was detected by rectal palpation at 2 h interval from onset of estrus till ovulation. Behavioral signs of estrus was more intense in primiparous than multiparous mithuns. Ovulation occurred at 26.1+/-1.1 h (ranging between 20 and 31 h) after the onset of estrus. As the method used to determine the onset of estrus is time consuming, labor intensive and no device is yet available to detect onset of estrus automatically, so this cannot be used practically as a predictor of time of ovulation. The mithun cow at estrus to be mounted by bull was recorded in all cases (100%). Ovulation occurred 23.5+/-1.5 h (ranging between 19 and 27 h) after first mounting. Although promising, mounting cannot be assessed automatically, which limits its practical use as a predictor of ovulation. Standing heat was recorded in 98.1% of total estrus studied in mithun cows and ovulation occurred 21.8+/-1.3 h (ranging between 19 and 25 h) after first observed standing heat. Standing heat can be detected automatically using mounting detectors. Hence, standing heat can be used practically as ovulation predictor in mithuns. In conclusion, cow to be mounted by mithun bull is the best predictor of ovulation, but non-availability of devices to detect it automatically restricts its practical application. Standing heat that recorded 98.1% estrus cases in mithun cows, can also be detected automatically using mounting detector, therefore be used widely as an ovulation predictor in field condition for mithun cows.  相似文献   

18.
The objective of this study was to determine the relative importance of seasonal changes in ovulation rate, fertilization rate and embryo survival as the cause of reduced lambing rates in ewes mated in February compared with those mated in November. The study was conducted at 57 degrees N using mature Mule ewes and Suffolk rams. Sixty ewes were allocated equally to five groups: unbred (UB) or mated at a natural oestrus during November (N) or February (F) by natural (N) or cervical artificial (A) insemination. Groups were maintained separately at pasture supplemented with hay. A raddled vasectomized or non-vasectomized ram was present with UB, NN and NA groups from 26 October 1995 to 1 January 1996 and with UB, FN and FA groups from 25 January 1996 to 31 March 1996. Ewes marked by the ram were recorded twice a day, and those in groups NN, NA, FN and FA were inseminated at their second behavioural oestrus. For all ewes, blood samples were obtained once a day from introduction of the vasectomized rams until 30 days after mating (groups NN, NA, FN and FA) or 20 days after the first oestrus (group UB), and ovulation rate was measured by laparoscopy 7 days after the first oestrus. For ewes in groups NN, NA, FN and FA, ovulation rate was measured again after the second oestrus and ova were recovered from six ewes per group for assessment of fertilization before autotransfer. Pregnancy and lambing rates were recorded at term. Mean (+/- SE) dates of the first recorded oestrus for ewes in groups NN, NA and UB, and FN, FA and UB were 4 +/- 1.1 November and 4 +/- 0.9 February, respectively, and intervals between the first and second oestrus were 16 +/- 0.2 and 17 +/- 0.3 days (P < 0.01), respectively. Ovulation rates were 2.6 +/- 0.08 and 2.0 +/- 0.05 (P < 0.001), and peripheral progesterone concentrations during the luteal phase were 8.5 +/- 0.25 and 7.6 +/- 0.31 ng ml-1 (P < 0.05), for November and February, respectively. The difference in peripheral progesterone concentration was not solely attributable to the difference in ovulation rate. There was no significant effect of month or method of insemination, or of embryo recovery and autotransfer procedures on pregnancy rates and the proportion of ewes that became pregnant were NN 0.92, NA 0.83, FN 0.67 and FA 0.75. For ewes undergoing embryo recovery and autotransfer, ova recovered per corpus luteum were 1.00, 0.93, 1.00 and 0.92, fertilized ova per ovum recovered were 0.69, 0.92, 1.00 and 0.83, and lambs born per corpus luteum were 0.62, 0.79, 0.78 and 0.58 for NN, NA, FN and FA groups, respectively. There were no significant seasonal effects on fertilization rate or embryo survival. It is concluded that a seasonal decline in ovulation rate is the primary cause of reduced lambing rates in ewes mated in February compared with those mated in November. Pregnancy rates were high after mating in both periods and were not enhanced by the use of cervical insemination.  相似文献   

19.
The objective of this work was to study the effect of the endogenous opiate peptide (EOP) antagonist, naloxone, on the preovulatory LH surge and on the time of onset and duration of oestrus in the ewe with induced oestrus during the non-breeding season. Forty Suffolk X Hampshire ewes 2-3-years-old and 50+/- 4kg were studied, ewes were divided at random in two groups of 20, housed in open paddocks under natural photoperiod (19 degrees latitude N); were fed with hay and commercial pellets, and provided water ad libitum. Group one received an intravaginal sponge with 45mg of medroxiprogesterone acetate for 14 days, and upon sponge withdrawal 250IU of eCG was administered i.m. Group two received the same treatment as group 1 but in addition they received two i.m. injections of 0.5mg of naloxone, one given on sponge withdrawal and the second 24h later (total dose 1.0mg). Oestrus in naloxone-treated ewes was present 32+/- 2h and in control ewes in 35+/- 3h after sponge withdrawal. Duration of oestrus in control ewes was shorter (27+/- 2.5h), than naloxone-treated ewes (39+/- 6h); (P<0.0001). The LH surge in naloxone-treated ewes was initiated 5h after onset of oestrus, and 8h after onset of oestrus in control ewes, and the difference was significative (P<0.0006). It was concluded that EOP are important modulators of reproductive function in the ewe.  相似文献   

20.
Follicular recruitment and luteal response to superovulatory treatment initiated relative to the status of the first wave of the ovine estrous cycle (Wave 1) were studied. All ewes (n = 25) received an intravaginal progestagen sponge to synchronize estrous cycles, and ewes were monitored daily by transrectal ultrasonography. Multiple-dose FSH treatment (total dose = 100 mg NIH-FSH-P1) was initiated on the day of ovulation (Day 0 group) in 16 ewes. In the remaining 9 ewes, FSH treatment was started 3 d after emergence of the largest follicle of Wave 1 (Day 3 group). Ewes received PGF(2alpha) with the last 2 FSH treatments to induce luteolysis. Daily blood samples were taken to determine progesterone profiles and to evaluate the luteal response subsequent to superovulation. The ovulation rate was determined by ultrasonography and correlated with direct observation of the ovaries during laparotomy 5 to 6 d after superovulatory estrus when the uterus was flushed to collect embryos. Results confirmed that follicular recruitment was suppressed by the presence of a large, growing follicle. In the Day 0 and Day 3 groups, respectively, mean numbers (+/- SEM) of large follicles (>/= 4 mm) recruited were 6.4 +/- 0.6 and 2.7 +/- 0.7 (P < 0.01) at 48 h after the onset of treatment, and 6.7 +/- 0.5 and 5.1 +/- 0.6 (P = 0.08) at 72 h after the onset of treatment. Ovulation rates were 5.6 +/- 0.8 and 3.3 +/- 0.8 in the respective groups (P < 0.05). The number of transferable embryos was 1.8 +/- 0.5 and 0.3 +/- 0.2 in the respective groups (P < 0.05). Short luteal phases (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号