首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the formation of sphingolipid mediators in platelets, which abundantly store, and release extracellularly, sphingosine 1-phosphate (Sph-1-P). Challenging [(3)H]Sph-labeled platelet suspensions with thrombin or 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in a decrease in Sph-1-P formation and an increase in sphingosine (Sph), ceramide (Cer), and sphingomyelin formation. Sph conversion into Cer, and Cer conversion into sphingomyelin were not affected upon activation, suggesting that Sph-1-P dephosphorylation may initiate the formation of sphingolipid signaling molecules. In fact, Sph-1-P phosphatase (but not lyase) activity was detected in platelets, but this activity was not enhanced by thrombin or TPA. When quantified with [(3)H]acetic anhydride acetylation, followed by HPLC separation, the amounts of Sph-1-P and Sph decreased and increased, respectively, upon stimulation with thrombin or TPA, and these changes were attenuated by staurosporine. Under these TPA treatment conditions, over half of the [(3)H]Sph-1-P (formed in platelets incubated with [(3)H]Sph) was detected extracellularly, possibly due to its release from platelets, which was completely inhibited by staurosporine pretreatment. Furthermore, when TPA-induced Sph-1-P release was blocked by staurosporine after the stimulation, the extracellular [(3)H]Sph-1-P radioactivity decreased, suggesting that the Sph-1-P released may undergo dephosphorylation extracellularly. To support this, [(32)P]Sph-1-P, when added extracellularly to platelet suspensions, was rapidly degraded, possibly due to the ecto-phosphatase activity. Our results suggest the presence in anucleate platelets of a transmembrane cycling pathway starting with Sph-1-P dephosphorylation and leading to the formation of other sphingolipid mediators.  相似文献   

2.
Sphingosine 1-phosphate (Sph-1-P) is considered to play a dual role in cellular signaling, acting intercellularly as well as intracellularly. In this study, we examined the role of Sph-1-P as a signaling molecule in human platelets, using DL-threo-dihydrosphingosine (DHS) and N,N-dimethylsphingosine (DMS), inhibitors of Sph kinase and protein kinase C. Both DMS and DL-threo-DHS were confirmed to be competitive inhibitors of Sph kinase obtained from platelet cytoplasmic fractions. In intact platelets labeled with [3H]Sph, stimulation with 12-O-tetradecanoylphorbol 13-acetate or thrombin did not affect [3H]-Sph-1-P formation. While both DMS and DL-threo-DHS inhibited not only [3H]Sph-1-P formation but also protein kinase C-dependent platelet aggregation, staurosporine, a potent protein kinase inhibitor, only inhibited the protein kinase C-dependent reaction. Hence, it is unlikely that Sph kinase activation and the resultant Sph-1-P formation are mediated by protein kinase C in platelets. Furthermore, Ca2+ mobilization induced by platelet agonists that act on G protein-coupled receptor was not affected by DMS or DL-threo-DHS. Our results suggest that Sph-1-P does not mediate intracellular signaling, including Ca2+ mobilization, in platelets.  相似文献   

3.
Sphingosine 1-phosphate: synthesis and release   总被引:4,自引:0,他引:4  
Sphingosine 1-phosphate (Sph-1-P) is a bioactive sphingolipid, acting both as an intracellular second messenger and extracellular mediator, in mammalian cells. In cell types where Sph-1-P acts as an intracellular messenger, stimulation-dependent synthesis of Sph-1-P, possibly resulting from sphingosine (Sph) kinase activation, is essential. Since this important kinase has recently been cloned, precise regulation of intracellular Sph-1-P synthesis will be clarified in the near future. As an intercellular mediator, elucidation of sources for extracellular Sph-1-P is important, in addition to identification of the cell surface receptors for this phospholipid. Blood platelets are very unique in that they store Sph-1-P abundantly (possibly due to the existence of highly active Sph kinase and a lack of Sph-1-P lyase) and release this bioactive lipid extracellularly upon stimulation. It is likely that platelets are an important source for extracellular Sph-1-P, especially for plasma and serum Sph-1-P. Platelet-derived Sph-1-P seems to play an important role in vascular biology.  相似文献   

4.
Sphingosine 1-phosphate (Sph-1-P) is a bioactive sphingolipid, acting both as an intracellular second messenger and extracellular mediator, in mammalian cells. In cell types where Sph-1-P acts as an intracellular messenger, stimulation-dependent synthesis of Sph-1-P, possibly resulting from sphingosine (Sph) kinase activation, is essential. Since this important kinase has recently been cloned, precise regulation of intracellular Sph-1-P synthesis will be clarified in the near future. As an intercellular mediator, elucidation of sources for extracellular Sph-1-P is important, in addition to identification of the cell surface receptors for this phospholipid. Blood platelets are very unique in that they store Sph-1-P abundantly (possibly due to the existence of highly active Sph kinase and a lack of Sph-1-P lyase) and release this bioactive lipid extracellularly upon stimulation. It is likely that platelets are an important source for extracellular Sph-1-P, especially for plasma and serum Sph-1-P. Platelet-derived Sph-1-P seems to play an important role in vascular biology.  相似文献   

5.
The importance of sphingosine 1-phosphate (Sph-1-P) as an intercellular sphingolipid mediator has been established in various systems, and this is especially true in the areas of vascular biology and immunology. Blood platelets store Sph-1-P abundantly and release this bioactive lysophospholipid extracellularly upon stimulation, while vascular endothelial cells and smooth muscle cells respond dramatically to this platelet-derived bioactive lipid. Most of the responses elicited by extracellular Sph-1-P are believed to be mediated by G protein-coupled cell surface receptors, i.e., S1Ps. It is likely that regulation of Sph-1-P biological activity could be important for therapeutics, including but not limited to control of vascular disorders. Furthermore, elucidation of the mechanisms by which the levels of Sph-1-P in the blood are regulated seems important. Accordingly, the application of Sph-1-P analysis to laboratory medicine may be an important task in clinical medicine. In this review, Sph-1-P-related metabolism in the plasma will be summarized. Briefly, the levels and bioactivities of plasma Sph-1-P in vivo may be regulated by various factors, including Sph-1-P release from platelets (and red blood cells, based upon the recent reports), Sph-1-P distribution between albumin and lipoproteins, and S1P expression and lipid phosphate phosphatase activity on the cell surface. Then, application of Sph-1-P analysis to laboratory medicine will be discussed.  相似文献   

6.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

7.
The binding of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a platelet activating factor (PAF), to plasma components was studied. Gel filtration and lipoprotein fractionation revealed the presence in the plasma of PAF-binding fractions corresponding to plasma albumin as well as of low and high density lipoproteins. Incubation of PAF-containing lipoproteins with rabbit platelets resulted in a transfer of PAF to the platelets. PAF bound to plasma albumin is less exchangeable than PAF bound to lipoproteins. The PAF-transferring efficiency of high density lipoproteins (HDL) and of low density lipoproteins (LDL) correlates with the amounts of HDL- and LDL-receptors on the platelet surface. It may thus be assumed that PAF released by various cells interacts with lipoproteins which further transport the bound PAF to target cells carrying lipoprotein receptors.  相似文献   

8.
To analyze the involvement in allergic reactions of platelets and sphingosine 1-phosphate (Sph-1-P), a lysophospholipid mediator released from activated platelets, the effects of Sph-1-P and a supernatant prepared from activated platelets on mast cell line RBL-2H3 were examined. Sph-1-P strongly inhibited the migration of both non-stimulated and fibronectin-stimulated RBL-2H3 cells, which was reversed by JTE-013, a specific antagonist of G protein-coupled Sph-1-P receptor S1P(2); S1P(2) was confirmed to be expressed in these cells. A similar anti-motility effect of Sph-1-P was observed in a phagokinetic assay. Consistent with these results, treatment of RBL-2H3 cells with Sph-1-P resulted in a rounded cell morphology, which was blocked by JTE-013. Under the present conditions, Sph-1-P failed to induce intracellular Ca(2+) mobilization or histamine degranulation, responses postulated to be elicited by intracellular Sph-1-P. Importantly, the Sph-1-P effect, i.e., the regulation of RBL-2H3 cell motility, was mimicked by the supernatant (both with and without boiling) prepared from activated platelets, and this effect of the supernatant was also blocked by JTE-013. Our results suggest that the motility of mast cells can be regulated by Sph-1-P and also platelets (which release Sph-1-P), via cell surface receptor S1P(2) (not through intracellular Sph-1-P actions, postulated previously in the same cells).  相似文献   

9.
The concentration of cholesterol, apolipoproteins A-I, B, and E has been determined in lymphedema fluid from nine patients with chronic primary lymphedema. The concentrations were: 38.14 +/- 21.06 mg/dl for cholesterol, 15.6 +/- 6.17 mg/dl for apolipoprotein A-I, 7.5 +/- 2.8 mg/dl for apolipoprotein B, and 1.87 +/- 0.50 mg/dl for apolipoprotein E. These values represent 23%, 12%, 6%, and 38% of plasma concentrations, respectively. The ratio of esterified to unesterified cholesterol in lymphedema fluid was 1.46 +/- 0.45. Lipoproteins of lymphedema fluid were fractionated according to particle size by gradient gel electrophoresis and by exclusion chromatography. Gradient gel electrophoresis showed that a majority of high density lipoproteins (HDL) of lymphedema fluid were larger than ferritin (mol wt 440,000) and smaller than low density lipoproteins (LDL); several discrete subpopulations could be seen with the large HDL region. Fractionation by exclusion chromatography showed that more than 25% of apolipoprotein A-I and all of apolipoprotein E in lymphedema fluid was associated with particles larger than plasma HDL2. Apolipoprotein A-I also eluted in fractions that contained particles the size of or smaller than albumin. Isolation of lipoproteins by sequential ultracentrifugation showed that less than 25% of lymphedema fluid cholesterol was associated with apolipoprotein B. The majority of apolipoprotein A-containing lipoproteins of lymphedema fluid were less dense than those in plasma. Ultracentrifugally separated fractions of lipoproteins were examined by electron microscopy. The fraction d less than 1.019 g/ml contained little material, while fraction d 1.019-1.063 g/ml contained two types of particles: round particles 17-26 nm in diameter and square-packing particles 13-17 nm on a side. Fractions d 1.063-1.085 g/ml had extensive arrays of square-packing particles 13-14 nm in size. Fractions d 1.085-1.11 g/ml and fractions d 1.11-1.21 g/ml contained round HDL, 12-13 nm diameter and 10 nm diameter, respectively. Discoidal particles were observed infrequently.  相似文献   

10.
Sphingolipids, including ceramide (Cer), sphingosine (Sph), and sphingosine 1-phosphate (Sph-1-P) have recently emerged as signal-transducing molecules. Functionally, a distinguishing characteristic of these lipids is their apparent participation in pro- or anti-proliferative cell regulation pathways. In this study, we examined the involvement of sphingolipids in the fate of FRTL-5 thyroid follicular cells. We first examined the effects of sphingolipids on FRTL-5 cell viability. Sph and Cer induced apoptosis, as revealed by fluorescence microscopy of TUNEL-positive fragmented nuclei and 180-300 bp DNA fragmentation on agarose gel electrophoresis while Sph-1-P was confirmed to prevent FRTL-5 cell apoptosis induced by deprivation of serum and TSH, possibly via cell surface receptors. We then analysed the metabolism of radiolabelled Sph and C(6)-Cer (a synthetic cell-permeable Cer) in FRTL-5 cells by thin layer chromatography, followed by autoradiography. Sph was mainly metabolized to Cer, and then to sphingomyelin, while Sph conversion into Sph-1-P was hardly detected. These changes were not affected by stimulation of the cells with TSH. Our results indicate the involvement of sphingolipid mediators in the fate of FRTL-5 thyroid cells.  相似文献   

11.
The plasma distribution and cellular uptake of [3H]vitamin D3 was studied in vitro using cultured human fibroblasts. Incubation of [3H]vitamin D3 (cholecalciferol) with plasma followed by sequential ultracentrifugal fractionation of the lipoproteins indicated that 2-4% of the radioactivity associated with the very low density lipoprotein (VLDL), 12% with low density lipoprotein (LDL), and approximately 60% with the high density lipoprotein (HDL). The remaining radioactivity, 25%, was associated with the sedimented plasma fractions. By comparison, an average of 86% of the radioactivity from [3H]1,25-dihydroxycholecalciferol associated with the sedimented plasma fractions. The uptake of [3H]vitamin D3 from plasma, LDL, or HDL was studied in cultured human cells; uptake by normal fibroblasts was greatest from LDL and least from plasma. The cellular association of vitamin D3 was time, concentration, and temperature dependent. At a concentration of 50 micrograms LDL/ml of medium, the uptake of [3H]vitamin D3 from LDL at 37 degrees C was rapid and reached a maximum at approximately 4 hr; it was slower from HDL but continued to increase slowly up to 24 hr. The significance of these in vitro findings is uncertain since much of the vitamin D3 absorbed from the intestine reportedly associates with chylomicrons and is rapidly taken up by the liver.  相似文献   

12.
Platelet-derived mediators may play an important role in the development of renal diseases through interaction with glomerular mesangial cells (MCs), and we, in this study, examined the effect of sphingosine 1-phosphate (Sph-1-P), a bioactive lipid released from activated platelets, on the contraction of MCs. Sph-1-P was found to induce MC contraction through mediation of Rho kinase both in cell shape change and collagen gel contraction assays. The specific antagonist of the Sph-1-P receptor S1P(2) inhibited the response. Similar results were obtained when the supernatant from activated platelet suspensions were used instead of Sph-1-P. Our findings suggest that platelet-derived Sph-1-P may be involved in MC contraction via S1P(2) and that regulation of this receptor might be useful therapeutically.  相似文献   

13.
Poly-β-hydroxybutyrate (PHB) is an amphiphilic lipid that has been found to be a ubiquitous component of the cellular membranes of bacteria, plants and animals. The distribution of PHB in human plasma was investigated using chemical and immunological methods. PHB concentrations proved highly variable; in a random group of 24 blood donors, total plasma PHB ranged from 0.60 to 18.2 mg/l, with a mean of 3.5 mg/l. In plasma separated by density gradient ultracentrifugation, lipoproteins carried 20–30% of total plasma PHB; 6–14% in the very low density lipoproteins (VLDL), 8–16% in the low density lipoproteins (LDL), and < 3% in the high density lipoproteins (HDL). The majority of plasma PHB (70–80%) was found in protein fractions of density > 1.22 g/ml. Western blot analysis of the high density fractions with anti-PHB F(ab')2 identified albumin as the major PHB-binding protein. The affinity of albumin for PHB was confirmed by in vitro studies which demonstrated transfer of 14C-PHB from chloroform into aqueous solutions of human and bovine serum albumins. PHB was less tightly bound to LDL than to other plasma components; the polymer could be isolated from LDL by extraction with chloroform, or by digestion with alkaline hypochlorite, but it could not similarly be recovered from VLDL or albumin. PHB in the LDL correlated positively with total plasma cholesterol and LDL cholesterol, and negatively with HDL cholesterol. The wide concentration range of PHB in plasma, its presence in VLDL and LDL and absence in HDL, coupled with its physical properties, suggest it may have important physiological effects.  相似文献   

14.
There was a rapid transfer of radioactive peptides to other lipoprotein fractions during the first 30 min after the intravenous injection of 125I-labeled rat very low density lipoprotein (VLDL) into rats. After this initial redistribution of radioactivity, label disappeared slowly from all lipoprotein fractions. The disappearance of 125I-labeled human VLDL injected into rats was the same as that of rat VLDL. Most of the radioactivity transferred from VLDL to low density (LDL) and high density (HDL) lipoproteins was associated with two peptides, identified in these studies by polyacrylamide gel electrophoresis as zone IVa and IVb peptides (fast-migrating peptides, possibly analogous to some human C apolipoproteins), although radioactivity initially associated with zone I (analogous to human apolipoprotein B) and zone III (not characterized) was also transferred to LDL and HDL. That the transfer of label from VLDL to LDL and HDL primarily involved small molecular weight peptides was confirmed in studies using VLDL predominantly labeled in these peptides by in vitro transfer from 125I-labeled HDL. Both zone I and zone IV radioactivity was rapidly removed from VLDL during the first 5 min after injection. However, although most of the zone IV radioactivity was recovered in LDL and HDL, only 12% of the label lost from zone I of VLDL was recovered in other lipoproteins, with the remainder presumably having been cleared from the plasma compartment. We have concluded that, during catabolism of rat VLDL apoprotein, there is a rapid transfer of small molecular weight peptides to both LDL and HDL. During the catabolic process, most of the VLDL is rapidly removed from the circulation, with only a small portion being transformed into LDL molecules.  相似文献   

15.
Since sphingosine 1-phosphate (Sph-1-P) is stored in abundant amounts in blood platelets and released extracellularly upon stimulation, it is important to clarify the effects of this bioactive lysophospholipid on vascular endothelial cells from the viewpoint of platelet-endothelial cell interactions. In this study, we investigated the effects of Sph-1-P on the cytoskeletal remodeling of human umbilical vein endothelial cells (HUVECs). Of a focal adhesion kinase (FAK) family of non-receptor protein-tyrosine kinases, HUVECs were found to express FAK, but scarcely proline-rich tyrosine kinase 2. Sph-1-P induced FAK tyrosine phosphorylation, myosin light chain phosphorylation, and the formation of stress fibers in HUVECs. The specific Rho inactivator C3 transferase from Clostridium botulinum abolished all of these cytoskeletal responses induced by Sph-1-P, while pertussis toxin only partly inhibited FAK tyrosine phosphorylation, and hardly affected myosin light chain phosphorylation and stress fiber formation. In contrast, Sph-1-P-induced intracellular Ca(2)(+) mobilization was suppressed by pertussis toxin, but not at all by C3 exoenzyme. Our results suggest that Sph-1-P, a bioactive lipid released from activated platelets, induces endothelial cell cytoskeletal reorganization, mainly through Rho-mediated signaling pathways.  相似文献   

16.
Fluid shear stress modulates the functional responses of platelets and vascular cells, and plays an important role in the pathogenesis of vascular disorders, including atherosclerosis and restenosis. Since shear stress induces activation of platelets, which abundantly store sphingosine 1-phosphate (Sph-1-P), and upregulates the mRNA expression of S1P(1), the most important Sph-1-P receptor expressed on the endothelial cells, we examined the effects of shear stress on the Sph-1-P-related responses involving these cells. Shear stress was found to induce Sph-1-P release from the platelets in a shear intensity- and time-dependent manner. Inhibitors of protein kinase C suppressed this mechanical force-induced Sph-1-P release, suggesting involvement of this kinase. On the other hand, in vascular endothelial cells, shear stress increased S1P(1) protein expression, as revealed by flow-cytometric analysis, and the responsiveness to Sph-1-P, which was assessed by monitoring the intracellular Ca(2+) concentration. These results indicate that shear stress enhances the Sph-1-P responses in cell-cell interactions between platelets and endothelial cells.  相似文献   

17.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (Sph-1-P) are known as structurally related bio-active lipids activating platelets through their respective receptors. Although the receptors for LPA and Sph-1-P have been recently identified in various cells, the identification and characterization of ones in platelets have been reported only preliminarily. In this report, we first investigated the distinct modes of LPA and Sph-1-P actions in platelet activation and found that LPA functioned as a much stronger agonist than Sph-1-P, and high concentrations of Sph-1-P specifically desensitized LPA-induced intracellular Ca(2+) mobilization. In order to identify the responsible receptors underlying these observations, we analyzed the LPA and Sph-1-P receptors which might be expressed in human platelets, by RT-PCR. We found for the first time that Edg2, 4, 6 and 7 mRNA are expressed in human platelets.  相似文献   

18.
Apolipoprotein M (apoM) is a novel apolipoprotein with unknown function. In this study, we established a method for isolating apoM-containing lipoproteins and studied their composition and the effect of apoM on HDL function. ApoM-containing lipoproteins were isolated from human plasma with immunoaffinity chromatography and compared with lipoproteins lacking apoM. The apoM-containing lipoproteins were predominantly of HDL size; approximately 5% of the total HDL population contained apoM. Mass spectrometry showed that the apoM-containing lipoproteins also contained apoJ, apoA-I, apoA-II, apoC-I, apoC-II, apoC-III, paraoxonase 1, and apoB. ApoM-containing HDL (HDL(apoM+)) contained significantly more free cholesterol than HDL lacking apoM (HDL(apoM-)) (5.9 +/- 0.7% vs. 3.2 +/- 0.5%; P < 0.005) and was heterogeneous in size with both small and large particles. HDL(apoM+) inhibited Cu(2+)-induced oxidation of LDL and stimulated cholesterol efflux from THP-1 foam cells more efficiently than HDL(apoM-). In conclusion, our results suggest that apoM is associated with a small heterogeneous subpopulation of HDL particles. Nevertheless, apoM designates a subpopulation of HDL that protects LDL against oxidation and stimulates cholesterol efflux more efficiently than HDL lacking apoM.  相似文献   

19.
Progeny of certain baboon sires accumulate lipoproteins in high density lipoprotein-1 (HDL1) when challenged with a high cholesterol, high saturated fat diet. These studies were conducted to determine the apoprotein composition and metabolic fate of HDL1 in the plasma. HDL1 particles containing apoA-I with and without apoE were detected. The majority of particles, however, contained apoA-I without any detectable apoE. To determine the metabolic fate of HDL1 in plasma, HDL1 labeled with iodinated apoA-I from animals with high levels of HDL1 and iodinated apoA-I-labeled autologous HDL were coinjected into both high and low HDL1 animals. The data for the decay of radioactivity in HDL1 and HDL were analyzed by multicompartment modelling. The radioactivity from HDL1 was cleared from the plasma either via direct removal (9.1 +/- 4.7% in low and 21.7 +/- 8.3% in high HDL1 animals) or via its conversion to HDL. A large proportion of radioactivity from HDL1 was rapidly transferred to HDL directly or metabolized via an intermediate compartment. Most of the radioactivity from apoE-poor HDL1, however, was transferred to HDL. Both high and low HDL1 animals catabolized HDL1 and HDL similarly. Low HDL1 animals transferred HDL1 radioactivity to HDL much faster. No detectable radioactivity from HDL was transferred to HDL1. Thus, HDL1 that accumulates in high HDL1 animals is mainly a precursor for HDL. Our hypothesis is that this accumulation of HDL1 is due to the slower cholesteryl ester transfer from HDL to lower density lipoproteins, thus affecting reverse cholesterol transport in high HDL1 baboons.  相似文献   

20.
The substrate properties of low-density lipoprotein (LDL) fractions from human and pig plasma and of lipoprotein a [Lp(a)] upon incubation with either pig or human lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) were investigated and compared with those of pig high-density lipoproteins (HDL) or human HDL-3. The cholesterol esterification using purified native pig LDL-1, human LDL, or Lp(a) as a substrate was approximately 36-42% that of pig HDL or human HDL-3, while cholesteryl ester formation with pig LDL-2 was 41-47%. No significant difference was found in the substrate activity between pig HDL and human HDL-3, and between human LDL and Lp(a), respectively. After depletion of pig LDL-1, pig LDL-2, and human LDL from apolipoprotein A-I (apoA-I), cholesteryl ester formation decreased to about 22-28% of the value found with pig HDL. Depletion of human LDL from apolipoprotein E (apoE) did not result in significantly different esterification rates in comparison to native LDL. Total removal of non-apoB proteins from human LDL resulted in esterification rates of approximately 10-15% that of HDL. Readdition of apoA-I to all these LDL fractions produced solely in apoA-I-depleted LDL fractions an increase of cholesteryl ester formation, whereas in those LDL fractions that were additionally depleted from apoE and/or from apoC polypeptides, a further decrease in the esterification rate occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号