首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fission yeast checkpoint protein Rad17 is required for the DNA integrity checkpoint responses. A fraction of Rad17 is chromatin bound independent of the other checkpoint proteins throughout the cell cycle. Here we show that in response to DNA damage induced by either methyl methanesulfonate treatment or ionizing radiation, increased levels of Rad17 bind to chromatin. Following S-phase stall induced by hydroxyurea or a cdc22 mutation, the chromatin-bound Rad17 progressively dissociates from the chromatin. After S-phase arrest by hydroxyurea in cds1Delta or rad3Delta cells or by replication mutants, Rad17 remains chromatin bound. Rad17 is able to complex in vivo with an Rfc small subunit, Rfc2, but not with Rfc1. Furthermore, cells with rfc1Delta are checkpoint proficient, suggesting that Rfc1 does not have a role in checkpoint function. A checkpoint-defective mutant protein, Rad17(K118E), which has similar nuclear localization to that of the wild type, is unable to bind ATP and has reduced ability in chromatin binding. Mutant Rad17(K118E) protein also has reduced ability to complex with Rfc2, suggesting that Lys(118) of Rad17 plays a role in Rad17-Rfc small-subunit complex formation and chromatin association. However, in the rad17.K118E mutant cells, Cds1 can be activated by hydroxyurea. Together, these results suggest that Rad17 binds to chromatin in response to an aberrant genomic structure generated from DNA damage, replication mutant arrest, or hydroxyurea arrest in the absence of Cds1. Rad17 is not required to bind chromatin when genomic structures are protected by hydroxyurea-activated Cds1. The possible checkpoint events induced by chromatin-bound Rad17 are discussed.  相似文献   

2.
Saccharomyces cerevisiae Rad53 has crucial functions in many aspects of the cellular response to DNA damage and replication blocks. To coordinate these diverse roles, Rad53 has two forkhead-associated (FHA) phosphothreonine-binding domains in addition to a kinase domain. Here, we show that the conserved N-terminal FHA1 domain is essential for the function of Rad53 to prevent the firing of late replication origins in response to replication blocks. However, the FHA1 domain is not required for Rad53 activation during S phase, and as a consequence of defective downstream signaling, Rad53 containing an inactive FHA1 domain is hyperphosphorylated in response to replication blocks. The FHA1 mutation dramatically hypersensitizes strains with defects in the cell cycle-wide checkpoint pathways (rad9Delta and rad17Delta) to DNA damage, but it is largely epistatic with defects in the replication checkpoint (mrc1Delta). Altogether, our data indicate that the FHA1 domain links activated Rad53 to downstream effectors in the replication checkpoint. The results reveal an important mechanistic difference to the homologous Schizosaccharomyces pombe FHA domain that is required for Mrc1-dependent activation of the corresponding Cds1 kinase. Surprisingly, despite the severely impaired replication checkpoint and also G(2)/M checkpoint functions, the FHA1 mutation by itself leads to only moderate viability defects in response to DNA damage, highlighting the importance of functionally redundant pathways.  相似文献   

3.
H Neecke  G Lucchini    M P Longhese 《The EMBO journal》1999,18(16):4485-4497
We studied the response of nucleotide excision repair (NER)-defective rad14Delta cells to UV irradiation in G(1) followed by release into the cell cycle. Only a subset of checkpoint proteins appears to mediate cell cycle arrest and regulate the timely activation of replication origins in the presence of unrepaired UV-induced lesions. In fact, Mec1 and Rad53, but not Rad9 and the Rad24 group of checkpoint proteins, are required to delay cell cycle progression in rad14Delta cells after UV damage in G(1). Consistently, Mec1-dependent Rad53 phosphorylation after UV irradiation takes place in rad14Delta cells also in the absence of Rad9, Rad17, Rad24, Mec3 and Ddc1, and correlates with entry into S phase. Two-dimensional gel analysis indicates that late replication origins are not fired in rad14Delta cells UV-irradiated in G(1) and released into the cell cycle, which instead initiate DNA replication from early origins and accumulate replication and recombination intermediates. Progression through S phase of UV-treated NER-deficient mec1 and rad53 mutants correlates with late origin firing, suggesting that unregulated DNA replication in the presence of irreparable UV-induced lesions might result from a failure to prevent initiation at late origins.  相似文献   

4.
Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. Keywords: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3  相似文献   

5.
The relationship between the DNA replication and spindle checkpoints of the cell cycle is unclear, given that in most eukaryotes, spindle formation occurs only after DNA replication is complete. Fission yeast rad3 mutant cells, which are deficient in DNA replication checkpoint function, enter, progress through, and exit mitosis even when DNA replication is blocked. In contrast, the entry of cds1 mutant cells into mitosis is delayed by several hours when DNA replication is inhibited. We show here that this delay in mitotic entry in cds1 cells is due in part to activation of the spindle checkpoint protein Mad2p. In the presence of the DNA replication inhibitor hydroxyurea (HU), cds1 mad2 cells entered and progressed through mitosis earlier than did cds1 cells. Overexpression of Mad2p or inactivation of Slp1p, a regulator of the anaphase-promoting complex, also rescued the checkpoint defect of HU-treated rad3 cells. Rad3p was shown to be involved in the physical interaction between Mad2p and Slp1p in the presence of HU. These results suggested that Mad2p and Slp1p act downstream of Rad3p in the DNA replication checkpoint and that Mad2p is required for the DNA replication checkpoint when Cds1p is compromised.  相似文献   

6.
Forkhead-associated (FHA) domains are phosphothreonine-binding modules prevalent in proteins with important cell cycle and DNA damage response functions. The yeast checkpoint kinase Rad53 is unique in containing two FHA domains. We have generated novel recessive rad53 alleles with abolished FHA domain functions resulting from Ala substitution of the critical phosphothreonine-binding residues Arg70 and Arg605. In asynchronous cells, inactivation of the N-terminal FHA1 domain did not impair Rad53 activation and downstream functions, whereas inactivation of the C-terminal FHA2 domain led to reduced Rad53 activation and significantly increased DNA damage sensitivity. Simultaneous inactivation of both FHA domains abolished Rad53 activation and all downstream functions and dramatically increased the sensitivity to DNA damage and replication blocks similar to kinase-defective and rad53 null alleles, but did not compromise the essential viability function of Rad53. Interestingly, in G2/M synchronized cells, mutation of either FHA domain prevented Rad53 activation and impaired the cell cycle arrest checkpoint. Our data demonstrate that both FHA domains are required for normal Rad53 functions and indicate that the two FHA domains have differential but partially overlapping roles in Rad53 activation and downstream signaling.  相似文献   

7.
《Genomics》1999,55(2):219-228
TheSchizosaccharomyces pombe rad17+cell cycle checkpoint control gene is required for S-phase and G2/M arrest in response to both DNA damage and incomplete DNA replication. We isolated and characterized the putative human (RAD17Sp) and mouse (mRAD17Sp) homologs of theS. pombeRad17 (Rad17Sp) protein. The humanRAD17Spopen reading frame (ORF) encodes a protein of 681 amino acids; themRAD17SpORF codes for a protein of 688 amino acids. ThemRAD17Spmessenger is highly expressed in the testis as a single 3-kb mRNA species. The human RAD17Sp and mRAD17Sp proteins are 24% identical and 46% similar to theS.pombeRad17Sp protein. Sequence homology was also noted with theSaccharomyces cerevisiaeRad24Sc (which is the structural counterpart ofS.pombeRad17Sp) and structurally related polypeptides fromCaenorhabditis elegans, Arabidopsis thaliana, Pyrococcus horikoshii,andDrosophila melanogaster.The degree of conservation between the mammalian RAD17Sp proteins and those of the other species is consistent with the evolutionary distance between the species, indicating that these proteins are most likely true counterparts. In addition, homology was found between the Rad17Sp homologs and proteins identified as components of mammalian replication factor C (RF-C)/activator 1, especially in several highly conserved RF-C-like domains including a “Walker A” motif. Using FISH and analysis of a panel of rodent–human cell hybrids, the humanRAD17Spgene (HGMW-approved symbolRAD17could be localized on human chromosome 5q13–q14, a region implicated in the etiology of small cell lung carcinoma, non-small-cell lung carcinoma, duodenal adenocarcinoma, and head and neck squamous cell carcinoma. Our results suggest that the structure and function of the checkpoint “rad” genes in the G2/M checkpoint pathway are evolutionary conserved between yeast and higher eukaryotes.  相似文献   

8.
Saccharomyces cerevisiae Rad53 is a protein kinase central to the DNA damage and DNA replication checkpoint signaling pathways. In addition to its catalytic domain, Rad53 contains two forkhead homology-associated (FHA) domains (FHA1 and FHA2), which are phosphopeptide binding domains. The Rad53 FHA domains are proposed to mediate the interaction of Rad53 with both upstream and downstream branches of the DNA checkpoint signaling pathways. Here we show that concurrent mutation of Rad53 FHA1 and FHA2 causes DNA checkpoint defects approaching that of inactivation or loss of RAD53 itself. Both FHA1 and FHA2 are required for the robust activation of Rad53 by the RAD9-dependent DNA damage checkpoint pathway, while an intact FHA1 or FHA2 allows the activation of Rad53 in response to replication block. Mutation of Rad53 FHA1 causes the persistent activation of the RAD9-dependent DNA damage checkpoint pathway in response to replicational stress, suggesting that the RAD53-dependent stabilization of stalled replication forks functions through FHA1. Rad53 FHA1 is also required for the phosphorylation-dependent association of Rad53 with the chromatin assembly factor Asf1, although Asf1 itself is apparently not required for the prevention of DNA damage in response to replication block.  相似文献   

9.
Saccharomyces cerevisiae Rad53 is a protein kinase central to the DNA damage and DNA replication checkpoint signaling pathways. In addition to its catalytic domain, Rad53 contains two forkhead homology-associated (FHA) domains (FHA1 and FHA2), which are phosphopeptide binding domains. The Rad53 FHA domains are proposed to mediate the interaction of Rad53 with both upstream and downstream branches of the DNA checkpoint signaling pathways. Here we show that concurrent mutation of Rad53 FHA1 and FHA2 causes DNA checkpoint defects approaching that of inactivation or loss of RAD53 itself. Both FHA1 and FHA2 are required for the robust activation of Rad53 by the RAD9-dependent DNA damage checkpoint pathway, while an intact FHA1 or FHA2 allows the activation of Rad53 in response to replication block. Mutation of Rad53 FHA1 causes the persistent activation of the RAD9-dependent DNA damage checkpoint pathway in response to replicational stress, suggesting that the RAD53-dependent stabilization of stalled replication forks functions through FHA1. Rad53 FHA1 is also required for the phosphorylation-dependent association of Rad53 with the chromatin assembly factor Asf1, although Asf1 itself is apparently not required for the prevention of DNA damage in response to replication block.  相似文献   

10.
Rad4TopBP1, a BRCT domain protein, is required for both DNA replication and checkpoint responses. Little is known about how the multiple roles of Rad4TopBP1 are coordinated in maintaining genome integrity. We show here that Rad4TopBP1 of fission yeast physically interacts with the checkpoint sensor proteins, the replicative DNA polymerases, and a WD-repeat protein, Crb3. We identified four novel mutants to investigate how Rad4TopBP1 could have multiple roles in maintaining genomic integrity. A novel mutation in the third BRCT domain of rad4+TopBP1 abolishes DNA damage checkpoint response, but not DNA replication, replication checkpoint, and cell cycle progression. This mutant protein is able to associate with all three replicative polymerases and checkpoint proteins Rad3ATR-Rad26ATRIP, Hus1, Rad9, and Rad17 but has a compromised association with Crb3. Furthermore, the damaged-induced Rad9 phosphorylation is significantly reduced in this rad4TopBP1 mutant. Genetic and biochemical analyses suggest that Crb3 has a role in the maintenance of DNA damage checkpoint and influences the Rad4TopBP1 damage checkpoint function. Taken together, our data suggest that Rad4TopBP1 provides a scaffold to a large complex containing checkpoint and replication proteins thereby separately enforcing checkpoint responses to DNA damage and replication perturbations during the cell cycle.  相似文献   

11.
The budding yeast S phase checkpoint responds to hydroxyurea-induced nucleotide depletion by preventing replication fork collapse and the segregation of unreplicated chromosomes. Although the block to chromosome segregation has been thought to occur by inhibiting anaphase, we show checkpoint-defective rad53 mutants undergo cycles of spindle extension and collapse after hydroxyurea treatment that are distinct from anaphase cells. Furthermore, chromatid cohesion, whose dissolution triggers anaphase, is dispensable for S phase checkpoint arrest. Kinetochore-spindle attachments are required to prevent spindle extension during replication blocks, and chromosomes with two centromeres or an origin of replication juxtaposed to a centromere rescue the rad53 checkpoint defect. These observations suggest that checkpoint signaling is required to generate an inward force involved in maintaining preanaphase spindle integrity during DNA replication distress. We propose that by promoting replication fork integrity under these conditions Rad53 ensures centromere duplication. Replicating chromosomes can then bi-orient in a cohesin-independent manner to restrain untimely spindle extension.  相似文献   

12.
The Saccharomyces cerevisiae Rad53 protein kinase is required for the execution of checkpoint arrest at multiple stages of the cell cycle. We found that Rad53 autophosphorylation activity depends on in trans phosphorylation mediated by Mec1 and does not require physical association with other proteins. Uncoupling in trans phosphorylation from autophosphorylation using a rad53 kinase-defective mutant results in a dominant-negative checkpoint defect. Activation of Rad53 in response to DNA damage in G(1) requires the Rad9, Mec3, Ddc1, Rad17 and Rad24 checkpoint factors, while this dependence is greatly reduced in S phase cells. Furthermore, during recovery from checkpoint activation, Rad53 activity decreases through a process that does not require protein synthesis. We also found that Rad53 modulates the lagging strand replication apparatus by controlling phosphorylation of the DNA polymerase alpha-primase complex in response to intra-S DNA damage.  相似文献   

13.
The Schizosaccharomyces pombe rad60 gene is essential for cell growth and is involved in repairing DNA double-strand breaks. Rad60 physically interacts with and is functionally related to the structural maintenance of chromosomes 5 and 6 (SMC5/6) protein complex. In this study, we investigated the role of Rad60 in the recovery from the arrest of DNA replication induced by hydroxyurea (HU). rad60-1 mutant cells arrested mitosis normally when treated with HU. Significantly, Rad60 function is not required during HU arrest but is required on release. However, the mutant cells underwent aberrant mitosis accompanied by irregular segregation of chromosomes, and DNA replication was not completed, as revealed by pulsed-field gel electrophoresis. The deletion of rhp51 suppressed the aberrant mitosis of rad60-1 cells and caused mitotic arrest. These results suggest that Rhp51 and Rad60 are required for the restoration of a stalled or collapsed replication fork after release from the arrest of DNA replication by HU. The rad60-1 mutant was proficient in Rhp51 focus formation after release from the HU-induced arrest of DNA replication or DNA-damaging treatment. Furthermore, the lethality of a rad60-1 rqh1Delta double mutant was suppressed by the deletion of rhp51 or rhp57. These results suggest that Rad60 is required for recombination repair at a step downstream of Rhp51. We propose that Rhp51-dependent DNA structures that cannot activate the mitotic checkpoints accumulate in rad60-1 cells.  相似文献   

14.
Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect in hsk1-89 is indicated by accumulation of cut cells at 30 degrees C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling. hsk1-89 displays apparent defect in mitosis at 37 degrees C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those of rad21-K1 and are significantly enhanced in a hsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.  相似文献   

15.
Saccharomyces cerevisiae Rad17p is necessary for cell cycle checkpoint arrests in response to DNA damage. Its known interactions with the checkpoint proteins Mec3p and Ddc1p in a PCNA-like complex indicate a sensor role in damage recognition. In a novel application of the yeast two-hybrid system and by immunoprecipitation, we show here that Rad17p is capable of increased self-interaction following DNA damage introduced by 4-nitroquinoline-N-oxide, camptothecin or partial inactivation of DNA ligase I. Despite overlap of regions required for Rad17p interactions with Rad17p or Mec3p, single amino acid substitutions revealed that Rad17p x Rad17p complex formation is independent of Mec3p. E128K (rad17-1) was found to inhibit Rad17p interaction with Mec3p but not with Rad17p. On the other hand, Phe-121 is essential for Rad17p self-interaction, and its function in checkpoint arrest but not for Mec3p interaction. These differential effects indicate that Rad17p-Rad17p interaction plays a role that is independent of the Rad17p x Mec3p x Ddc1p complex, although our results are also compatible with Rad17p-mediated supercomplex formation of the Rad17p x Mec3p x Ddc1p heterotrimer in response to DNA damage.  相似文献   

16.
The Saccharomyces cerevisiae Mec1-Ddc2 protein kinase (human ATR-ATRIP) initiates a signal transduction pathway in response to DNA damage and replication stress to mediate cell cycle arrest. The yeast DNA damage checkpoint clamp Ddc1-Mec3-Rad17 (human Rad9-Hus1-Rad1: 9-1-1) is loaded around effector DNA and thereby activates Mec1 kinase. Dpb11 (Schizosaccharomyces pombe Cut5/Rad4 or human TopBP1) is an essential protein required for the initiation of DNA replication and has a role in checkpoint activation. In this study, we demonstrate that Dpb11 directly activates the Mec1 kinase in phosphorylating the downstream effector kinase Rad53 (human Chk1/2) and DNA bound RPA. However, DNA was not required for Dpb11 to function as an activator. Dpb11 and yeast 9-1-1 independently activate Mec1, but substantial synergism in activation was observed when both activators were present. Our studies suggest that Dpb11 and 9-1-1 may partially compensate for each other during yeast checkpoint function.  相似文献   

17.
Kiely J  Haase SB  Russell P  Leatherwood J 《Genetics》2000,154(2):599-607
orp2 is an essential gene of the fission yeast Schizosaccharomyces pombe with 22% identity to budding yeast ORC2. We isolated temperature-sensitive alleles of orp2 using a novel plasmid shuffle based on selection against thymidine kinase. Cells bearing the temperature-sensitive allele orp2-2 fail to complete DNA replication at a restrictive temperature and undergo cell cycle arrest. Cell cycle arrest depends on the checkpoint genes rad1 and rad3. Even when checkpoint functions are wild type, the orp2-2 mutation causes high rates of chromosome and plasmid loss. These phenotypes support the idea that Orp2 is a replication initiation factor. Selective spore germination allowed analysis of orp2 deletion mutants. These experiments showed that in the absence of orp2 function, cells proceed into mitosis despite a lack of DNA replication. This suggests either that the Orp2 protein is a part of the checkpoint machinery or more likely that DNA replication initiation is required to induce the replication checkpoint signal.  相似文献   

18.
Six checkpoint Rad proteins (Rad1, Rad3, Rad9, Rad17, Rad26, and Hus1) are needed to regulate checkpoint protein kinases Chk1 and Cds1 in fission yeast. Chk1 is required to prevent mitosis when DNA is damaged by ionizing radiation (IR), whereas either kinase is sufficient to prevent mitosis when DNA replication is inhibited by hydroxyurea (HU). Checkpoint Rad proteins are required for IR-induced phosphorylation of Chk1 and HU-induced activation of Cds1. IR activates Cds1 only during the DNA synthesis (S) phase, whereas HU induces Chk1 phosphorylation only in cds1 mutants. Here, we investigate the basis of the checkpoint signal specificity of Chk1 phosphorylation and Cds1 activation. We show that IR fails to induce Chk1 phosphorylation in HU-arrested cells. Release from the HU arrest following IR causes substantial Chk1 phosphorylation. These and other data indicate that Cds1 prevents Chk1 phosphorylation in HU-arrested cells, which suggests that Cds1 actively suppresses a repair process that leads to Chk1 phosphorylation. Cds1 becomes more highly concentrated in the nucleus only during the S phase of the cell cycle. This finding correlates with S-phase specificity of IR-induced activation of Cds1. However, constitutive nuclear localization of Cds1 does not enhance IR-induced activation of Cds1. This result suggests that Cds1 activation requires DNA structures or protein activities that are present only during S phase. These findings help to explain how Chk1 and Cds1 respond to different checkpoint signals.  相似文献   

19.
In eucaryotic cells chromosomes must be fully replicated and repaired before mitosis begins. Genetic studies indicate that this dependence of mitosis on completion of DNA replication and DNA repair derives from a negative control called a checkpoint which somehow checks for replication and DNA damage and blocks cell entry into mitosis. Here we summarize our current understanding of the genetic components of the cell cycle checkpoint in budding yeast. Mutants were identified and their phase and signal specificity tested primarily through interactions of the arrest-defective mutants with cell division cycle mutants. The results indicate that dual checkpoint controls exist in budding yeast, one control sensitive to inhibition of DNA replication (S-phase checkpoint), and a distinct but overlapping control sensitive to DNA repair (G2 checkpoint). Six genes are required for arrest in G2 phase after DNA damage (RAD9, RAD17, RAD24, MEC1, MEC2, and MEC3), and two of these are also essential for arrest in S phase when DNA replication is blocked (MEC1 and MEC2).  相似文献   

20.
In fission yeast, replication fork arrest activates the replication checkpoint effector kinase Cds1Chk2/Rad53 through the Rad3ATR/Mec1-Mrc1Claspin pathway. Hsk1, the Cdc7 homolog of fission yeast required for efficient initiation of DNA replication, is also required for Cds1 activation. Hsk1 kinase activity is required for induction and maintenance of Mrc1 hyperphosphorylation, which is induced by replication fork block and mediated by Rad3. Rad3 kinase activity does not change in an hsk1 temperature-sensitive mutant, and Hsk1 kinase activity is not affected by rad3 mutation. Hsk1 kinase vigorously phosphorylates Mrc1 in vitro, predominantly at non-SQ/TQ sites, but this phosphorylation does not seem to affect the Rad3 action on Mrc1. Interestingly, the replication stress-induced activation of Cds1 and hyperphosphorylation of Mrc1 is almost completely abrogated in an initiation-defective mutant of cdc45, but not significantly in an mcm2 or polε mutant. These results suggest that Hsk1-mediated loading of Cdc45 onto replication origins may play important roles in replication stress-induced checkpoint.Key words: Cdc7, Cdc45, checkpoint, DNA replication, Mrc1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号