首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the molecular interplay between pathogenic microorganisms and their host, proteolytic mechanisms are believed to play a crucial role. Here we find that the important human pathogen Streptococcus pyogenes (group A Streptococcus) expresses a surface protein with high affinity (Ka = 2.0 x 10(8) M-1) for alpha2-macroglobulin (alpha2M), the dominating proteinase inhibitor of human plasma. The immunoglobulin-binding protein G of group C and G streptococci also contains an alpha2M-binding domain and a gene encoding protein GRAB (protein G-related alpha2M-binding protein) was identified in the S. pyogenes Genome Sequencing data base. The grab gene is present in most S. pyogenes strains and is well conserved. Protein GRAB has typical features of a surface-attached protein of Gram-positive bacteria. It also contains a region homologous to parts of the alpha2M-binding domain of protein G and a variable number of a unique 28-amino acid-long repeat. Using Escherichia coli-produced protein GRAB and synthetic GRAB peptides, the alpha2M-binding region was mapped to the NH2-terminal part of protein GRAB, which is the region with homology to protein G. An isogenic S. pyogenes mutant lacking surface-associated protein GRAB showed no alpha2M binding activity and was attenuated in virulence when injected intraperitoneally in mice. Finally, alpha2M bound to the bacterial surface via protein GRAB was found to entrap and inhibit the activity of both S. pyogenes and host proteinases, thereby protecting important virulence determinants from proteolytic degradation. This regulation of proteolytic activity at the bacterial surface should affect the host-microbe relation during S. pyogenes infections.  相似文献   

2.
Streptococcus pyogenes, or group A Streptococcus, is one of the most frequent causes of pharyngitis and skin infections in humans. Many virulence mechanisms have been suggested to be involved in the infectious process. Among them is the binding to the bacterial cell surface of the complement regulatory proteins factor H, factor H-like protein 1 (FHL-1), and C4b-binding protein. Previous studies indicate that binding of these three regulators to the streptococcal cell involves the M protein encoded by the emm gene. M-type 18 strains are prevalent among clinical isolates and have been shown to interact with all three complement regulators simultaneously. Using isogenic strains lacking expression of the Emm18 or the Enn18 proteins, we demonstrate in this study that, in contradistinction to previously described S. pyogenes strains, M18 strains bind the complement regulators factor H, FHL-1, and C4b-binding protein through two distinct cell surface proteins. Factor H and FHL-1 bind to the Emm18 protein, while C4BP binds to the Enn18 protein. We propose that expression of two distinct surface structures that bind complement regulatory proteins represents a unique adaptation of M18 strains that enhances their resistance to opsonization by human plasma and increases survival of this particular S. pyogenes strain in the human host. These new findings illustrate that S. pyogenes has evolved diverse mechanisms for recruitment of complement regulatory proteins to the bacterial surface to evade immune clearance in the human host.  相似文献   

3.
Recent work from several laboratories has demonstrated that proteolytic mechanisms significantly contribute to the molecular interplay between Streptococcus pyogenes, an important human pathogen, and its host. Here we describe the identification, purification and characterization of a novel extracellular cysteine proteinase produced by S.pyogenes. This enzyme, designated IdeS for Immunoglobulin G-degrading enzyme of S.pyogenes, is distinct from the well-characterized streptococcal cysteine proteinase, SpeB, and cleaves human IgG in the hinge region with a high degree of specificity. Thus, other human proteins, including immunoglobulins M, A, D and E, are not degraded by IdeS. The enzyme efficiently cleaves IgG antibodies bound to streptococcal surface structures, thereby inhibiting the killing of S.pyogenes by phagocytic cells. This and additional observations on the distribution and expression of the ideS gene indicate that IdeS represents a novel and significant bacterial virulence determinant, and a potential therapeutic target.  相似文献   

4.
Group A streptococcus (Streptococcus pyogenes) is an exclusively human pathogen that causes a wide spectrum of diseases ranging from pharyngitis, to impetigo, to toxic shock, to necrotizing fasciitis. The diversity of these disease states necessitates that S. pyogenes possess the ability to modulate both the innate and adaptive immune responses. SpeB, a cysteine proteinase, is the predominant secreted protein from S. pyogenes. Because of its relatively indiscriminant specificity, this enzyme has been shown to degrade the extracellular matrix, cytokines, chemokines, complement components, immunoglobulins, and serum protease inhibitors, to name but a few of the known substrates. Additionally, SpeB regulates other streptococcal proteins by degrading them or releasing them from the bacterial surface. Despite the wealth of literature on putative SpeB functions, there remains much controversy about this enzyme because many of reported activities would produce contradictory physiological results. Here we review all known host and bacterial protein substrates for SpeB, their cleavage sites, and discuss the role of this enzyme in streptococcal pathogenesis based on the current literature.  相似文献   

5.
The significant human bacterial pathogen Streptococcus pyogenes expresses GRAB, a surface protein that binds alpha(2)-macroglobulin (alpha(2)M), a major proteinase inhibitor of human plasma. alpha(2)M inhibits proteolysis by trapping the proteinase, which, however, still remains proteolytically active against smaller peptides that can penetrate the alpha(2)M-proteinase complex. Here we report that SpeB, a cysteine proteinase secreted by S. pyogenes, is trapped by alpha(2)M bound to protein GRAB. As a consequence, SpeB is retained at the bacterial surface and protects S. pyogenes against killing by the antibacterial peptide LL-37.  相似文献   

6.
Candida albicans secreted aspartyl proteinases in virulence and pathogenesis.   总被引:14,自引:0,他引:14  
Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis.  相似文献   

7.
Many strains of the important human pathogen Streptococcus pyogenes form aggregates when grown in vitro in liquid medium. The present studies demonstrate that this property is crucial for the adherence, the resistance to phagocytosis and the virulence of S. pyogenes. A conserved sequence of 19 amino acid residues (designated AHP) was identified in surface proteins of common S. pyogenes serotypes. This sequence was found to promote bacterial aggregation through homophilic protein-protein interactions between AHP-containing surface proteins of neighbouring bacteria. A synthetic AHP peptide inhibited S. pyogenes aggregation, reduced the survival of S. pyogenes in human blood and attenuated its virulence in mice. In contrast, mutant bacteria devoid of surface proteins containing AHP-related sequences did not aggregate or adhere to epithelial cells. These bacteria are also rapidly killed in human blood and show reduced virulence in mice, underlining the pathogenic significance of the AHP sequence and S. pyogenes aggregation.  相似文献   

8.
Fibronectin-binding surface proteins are found in many bacterial species. Most strains of Streptococcus pyogenes, a major human pathogen, express the fibronectin-binding protein F1, which promotes bacterial adherence to and entry into human cells. In this study, the role of fibronectin in S. pyogenes virulence was investigated by introducing the protein F1 gene in an S. pyogenes strain lacking this gene. Furthermore, transgenic mice lacking plasma fibronectin were used to examine the relative contribution of plasma and cellular fibronectin to S. pyogenes virulence. Unexpectedly, protein F1-expressing bacteria were less virulent to normal mice, and virulence was partly restored when these bacteria were used to infect mice lacking plasma fibronectin. Dissemination to the spleen of infected mice was less efficient for fibronectin-binding bacteria. These bacteria also disseminated more efficiently in mice lacking plasma fibronectin, demonstrating that plasma fibronectin bound to the bacterial surface downregulates S. pyogenes virulence by limiting bacterial spread. From an evolutionary point of view, these results suggest that reducing virulence by binding fibronectin adds selective advantages to the bacterium.  相似文献   

9.
Effectors of the innate immune system, the anti-bacterial peptides, have pivotal roles in preventing infection at epithelial surfaces. Here we show that proteinases of the significant human pathogens Pseudomonas aeruginosa, Enterococcus faecalis, Proteus mirabilis and Streptococcus pyogenes, degrade the antibacterial peptide LL-37. Analysis by mass spectrometry of fragments generated by P. aeruginosa elastase in vitro revealed that the initial cleavages occurred at Asn-Leu and Asp-Phe, followed by two breaks at Arg-Ile, thus inactivating the peptide. Proteinases of the other pathogens also degraded LL-37 as determined by SDS-PAGE. Ex vivo, P. aeruginosa elastase induced LL-37 degradation in human wound fluid, leading to enhanced bacterial survival. The degradation was blocked by the metalloproteinase inhibitors GM6001 and 1, 10-phenantroline (both of which inhibited P. aeruginosa elastase, P. mirabilis proteinase, and E. faecalis gelatinase), or the inhibitor E64 (which inhibited S. pyogenes cysteine proteinase). Additional experiments demonstrated that dermatan sulphate and disaccharides of the structure [DeltaUA(2S)-GalNAc(4,6S)], or sucroseoctasulphate, inhibited the degradation of LL-37. The results indicate that proteolytic degradation of LL-37 is a common virulence mechanism and that molecules which block this degradation could have therapeutic potential.  相似文献   

10.
M Collin  A Olsén 《The EMBO journal》2001,20(12):3046-3055
Streptococcus pyogenes is an important human pathogen that selectively interacts with proteins involved in the humoral defense system, such as immunoglobulins and complement factors. In this report we show that S.pyogenes has the ability to hydrolyze the chitobiose core of the asparagine-linked glycan on immuno globulin G (IgG) when bacteria are grown in the presence of human plasma. This activity is associated with the secretion of a novel 108 kDa protein denoted EndoS. EndoS has endoglycosidase activity on purified soluble IgG as well as IgG bound to the bacterial surface. EndoS is required for the activity on IgG, as an isogenic EndoS mutant could not hydrolyze the glycan on IgG. In addition, we show that the secreted streptococcal cysteine proteinase SpeB cleaves IgG in the hinge region in a papain-like manner. This is the first example of an endoglycosidase produced by a bacterial pathogen that selectively hydrolyzes human IgG, and reveals a novel mechanism which may contribute to S.pyogenes pathogenesis.  相似文献   

11.
A combination of viral, bacterial, and host factors contributes to the severity and overall mortality associated with influenza virus-bacterium superinfections. To date, the virulence associated with the recently identified influenza virus protein PB1-F2 has been largely defined using models of primary influenza virus infection, with only limited assessment in models of Streptococcus pneumoniae superinfection. Specifically, these studies have incorporated isogenic viruses that differ in the PB1-F2 expressed, but there is still knowledge to be gained from evaluation of natural variants derived from a nonhuman host species (swine). Using this rationale, we developed the hypothesis that naturally occurring viruses expressing variants of genes, like the PB1-F2 gene, can be associated with the severity of secondary bacterial infections. To test this hypothesis, we selected viruses expressing variants in PB1-F2 and evaluated outcomes from superinfection with three distinct Gram-positive respiratory pathogens: Streptococcus pneumoniae, Staphylococcus aureus, and Streptococcus pyogenes. Our results demonstrate that the amino acid residues 62L, 66S, 75R, 79R, and 82L, previously proposed as molecular signatures of PB1-F2 virulence for influenza viruses in the setting of bacterial superinfection, are broadly associated with enhanced pathogenicity in swine in a bacterium-specific manner. Furthermore, truncated PB1-F2 proteins can preferentially increase mortality when associated with Streptococcus pyogenes superinfection. These findings support efforts to increase influenza virus surveillance to consider viral genotypes that could be used to predict increased severity of superinfections with specific Gram-positive respiratory pathogens.  相似文献   

12.
Strains of the Gram-positive human pathogen Streptococcus pyogenes (group A streptococcus) that express surface-associated M or M-like proteins survive and grow in non-immune fresh human blood. This is generally accepted to be caused by an antiphagocytic property of these proteins. However, in most previous studies, an inhibition of the internalization of the bacteria into host cells has not been studied or not directly demonstrated. Therefore, in the present paper, we used flow cytometry, fluorescence microscopy and electron microscopy to study phagocytosis by human neutrophils of wild-type S. pyogenes and strains deficient in expression of M protein and/or the M-like protein H. The results demonstrate that all strains of S. pyogenes tested, including the wild-type AP1 strain, induce actin polymerization and are efficiently phagocytosed by human neutrophils. In addition, using classical bactericidal assays, we show that the wild-type AP1 strain can survive inside neutrophils, whereas mutant strains are rapidly killed. We conclude that the ability of virulent S. pyogenes to survive and multiply in whole blood is most likely not possible to explain only by an antiphagocytic effect of bacterial surface components. Instead, our data suggest that bacterial evasion of host defences occurs intracellularly and that survival inside human neutrophils may contribute to the pathogenesis of S. pyogenes and the recurrence of S. pyogenes infections.  相似文献   

13.
Recent studies have shown that activation of complement and contact systems results in the generation of antibacterial peptides. Streptococcus pyogenes, a major bacterial pathogen in humans, exists in >100 different serotypes due to sequence variation in the surface-associated M protein. Cases of invasive and life-threatening S. pyogenes infections are commonly associated with isolates of the M1 serotype, and in contrast to the large majority of M serotypes, M1 isolates all secrete the SIC protein. Here, we show that SIC interferes with the activation of the contact system and blocks the activity of antibacterial peptides generated through complement and contact activation. This effect promotes the growth of S. pyogenes in human plasma, and in a mouse model of S. pyogenes sepsis, SIC enhances bacterial dissemination, results which help explain the high frequency of severe S. pyogenes infections caused by isolates of the M1 serotype.  相似文献   

14.
Streptococcus pneumoniae naturally colonizes the nasopharynx as a commensal organism and sometimes causes infections in remote tissue sites. This bacterium is highly capable of resisting host innate immunity during nasopharyngeal colonization and disseminating infections. The ability to recruit complement factor H (FH) by S. pneumoniae has been implicated as a bacterial immune evasion mechanism against complement-mediated bacterial clearance because FH is a complement alternative pathway inhibitor. S. pneumoniae recruits FH through a previously defined FH binding domain of choline-binding protein A (CbpA), a major surface protein of S. pneumoniae. In this study, we show that CbpA binds to human FH, but not to the FH proteins of mouse and other animal species tested to date. Accordingly, deleting the FH binding domain of CbpA in strain D39 did not result in obvious change in the levels of pneumococcal bacteremia or virulence in a bacteremia mouse model. Furthermore, this species-specific pneumococcal interaction with FH was shown to occur in multiple pneumococcal isolates from the blood and cerebrospinal fluid. Finally, our phagocytosis experiments with human and mouse phagocytes and complement systems provide additional evidence to support our hypothesis that CbpA acts as a bacterial determinant for pneumococcal resistance to complement-mediated host defense in humans.  相似文献   

15.
Streptococcus pneumoniae is a common cause of septicemia in the immunocompetent host. To establish infection, S. pneumoniae has to overcome host innate immune responses, one component of which is the complement system. Using isogenic bacterial mutant strains and complement-deficient immune naive mice, we show that the S. pneumoniae virulence factor pneumolysin prevents complement deposition on S. pneumoniae, mainly through effects on the classical pathway. In addition, using a double pspA-/ply- mutant strain we demonstrate that pneumolysin and the S. pneumoniae surface protein PspA act in concert to affect both classical and alternative complement pathway activity. As a result, the virulence of the pspA-/ply- strain in models of both systemic and pulmonary infection is greatly attenuated in wild-type mice but not complement deficient mice. The sensitivity of the pspA-/ply- strain to complement was exploited to demonstrate that although early innate immunity to S. pneumoniae during pulmonary infection is partially complement-dependent, the main effect of complement is to prevent spread of S. pneumoniae from the lungs to the blood. These data suggest that inhibition of complement deposition on S. pneumoniae by pneumolysin and PspA is essential for S. pneumoniae to successfully cause septicemia. Targeting mechanisms of complement inhibition could be an effective therapeutic strategy for patients with septicemia due to S. pneumoniae or other bacterial pathogens.  相似文献   

16.
Human fibrinogen (Fg) binds to surface proteins expressed by many pathogenic bacteria and has been implicated in different host-pathogen interactions, but the role of bound Fg remains unclear. Here, we analyse the role of Fg bound to Streptococcus pyogenes M protein, a major virulence factor that confers resistance to phagocytosis. Studies of the M5 system showed that a chromosomal mutant lacking the Fg-binding region was completely unable to resist phagocytosis, indicating that bound Fg plays a key role in virulence. Deposition of complement on S. pyogenes occurred via the classical pathway even under non-immune conditions, but was blocked by M5-bound Fg, which reduced the amount of classical pathway C3 convertase on the bacterial surface. This property of M protein-bound Fg may explain its role in phagocytosis resistance. Previous studies have shown that many M proteins do not bind Fg, but interfere with complement deposition and phagocytosis by recruiting human C4b-binding protein (C4BP), an inhibitor of the classical pathway. Thus, all M proteins may share ability to recruit a human plasma protein, Fg or C4BP, which inhibits complement deposition via the classical pathway. Our data identify a novel function for surface-bound Fg and allow us to propose a unifying mechanism by which M proteins interfere with innate immunity.  相似文献   

17.
Periodontal disease is characterized by inflammation of the periodontium manifested by recruitment of neutrophils, which can degranulate, releasing powerful proteinases responsible for destruction of connective tissues, and eventual loss of tooth attachment. Although the presence of host proteinase inhibitors (serpins) should minimize tissue damage by endogenous proteinases, this is not seen clinically, and it has been speculated that proteolytic inactivation of serpins may contribute to progression of the disease. A major pathogen associated with periodontal disease is the Gram-negative anaerobe Porphyromonas gingivalis, and in this report, we describe a novel proteinase that has been isolated from culture supernatants of this organism that is capable of inactivating the human serpin, alpha1-proteinase inhibitor, the primary endogenous regulator of human neutrophil elastase. This new enzyme, referred to as periodontain, belongs to the cysteine proteinase family based on inhibition studies and exists as a 75-kDa heterodimer. Furthermore, periodontain shares significant homology to streptopain, a proteinase from Streptococcus pyogenes, and prtT, a putative proteinase from P. gingivalis. Clearly, the presence of this enzyme, which rapidly inactivates alpha1-proteinase inhibitor, could result in elevated levels of human neutrophil elastase clinically detected in periodontal disease and should be considered as a potential virulence factor for P. gingivalis.  相似文献   

18.
Ma Z  Zhang H  Zheng J  Li Y  Yi L  Fan H  Lu C 《PloS one》2012,7(2):e32099
Streptococcus equi ssp. zooepidemicus (S. zooepidemicus, S.z) is one of the common pathogens that can cause septicemia, meningitis, and mammitis in domesticated species. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. The interaction between SzP of S. zooepidemicus and porcine thioredoxin (TRX) was identified by the yeast two-hybrid and further confirmed by co-immunoprecipitation. SzP interacted with both reduced and the oxidized forms of TRX without inhibiting TRX activity. Membrane anchored SzP was able to recruit TRX to the surface, which would facilitate the antiphagocytosis of the bacteria. Further experiments revealed that TRX regulated the alternative complement pathway by inhibiting C3 convertase activity and associating with factor H (FH). TRX alone inhibited C3 cleavage and C3a production, and the inhibitory effect was additive when FH was also present. TRX inhibited C3 deposition on the bacterial surface when it was recruited by SzP. These new findings indicated that S. zooepidemicus used SzP to recruit TRX and regulated the alternative complement pathways to evade the host immune phagocytosis.  相似文献   

19.
Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB).  相似文献   

20.
Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP) and/or Factor H (FH), to curtail complement C3 (a critical opsonin) deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being unable to limit the infection. Herein we describe the course of GAS infection in three human complement inhibitor transgenic (tg) mouse models that examined each inhibitor (human C4BP or FH) alone, or the two inhibitors together (C4BPxFH or ‘double’ tg). GAS infection with strains that bound C4BP and FH resulted in enhanced mortality in each of the three transgenic mouse models compared to infection in wild type mice. In addition, GAS manifested increased virulence in C4BPxFH mice: higher organism burdens and greater elevations of pro-inflammatory cytokines and they died earlier than single transgenic or wt controls. The effects of hu-C4BP and hu-FH were specific for GAS strains that bound these inhibitors because strains that did not bind the inhibitors showed reduced virulence in the ‘double’ tg mice compared to strains that did bind; mortality was also similar in wild-type and C4BPxFH mice infected by non-binding GAS. Our findings emphasize the importance of binding of complement inhibitors to GAS that results in impaired opsonization and phagocytic killing, which translates to enhanced virulence in a humanized whole animal model. This novel hu-C4BPxFH tg model may prove invaluable in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号