首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Logarithmic amplifiers are useful in accumulating flow cytometric data with a large dynamic range. However, quantitative comparison of fluorescence intensities for different samples or different subpopulations within a sample is simplified by the conversion of data from log space back to linear space. A method is described in which fluorescent polystyrene spheres of differing intensities are used to construct a calibration curve for the logarithmic intensity scale. This allows calculation of relative linear intensity for each channel of the logarithmically accumulated data and determination of linear fluorescence means and coefficients of variation for comparative purposes. Fluorescent spheres of appropriate intensity may also be used as internal standards to monitor instrument and/or stain stability for samples accumulated using logarithmic amplifiers.  相似文献   

2.
A calibration and quality control technique suited to process monitoring with immunoassay is demonstrated. The particle concentration fluorescence immunoassay (PC-FIA) is shown to provide a sensitive and rapid method for the quantification of specific biomolecules in cell cultures. Smoothing of linear calibration parameters is performed by forming weighted averages of standard points as the run progresses. These estimates are then used to determine slope and intercept values for improved calibration. The nonuniformity of the fluorescent signal variance is also considered, and a weight model is developed to describe the relationship between signal fluorescence and signal variance for weighted linear curve fitting. Pooling calibration results over the process run improves overall assay performance as determined by using standard control chart analysis. This method is suitable for semicontinuous monitoring of animal cell fermentations and has been used here to measure cell-associated and culture supernatant concentrations of monoclonal antibody (Ab) from hybridoma cells. The cell-associated Ab concentration correlates with cell-specific production rate. Assay times on the order of 10 min for supernatant and 25-30 min for cell-associated Ab concentrations can be achieved, making this procedure suitable for process monitoring and control. Under these conditions the assay has a detection limit of approximately 10 ng/mL, providing a sensitive and specific method for the quantification of cell culture constituents.  相似文献   

3.
A routine is described that readily allows the rescaling of linear histographic data to a corresponding logarithmic histogram. This procedure significantly improves data display, particularly where a wide range in the measured parameter is encountered. The logarithmic scale displays peaks with band widths more proportional to their respective coefficients of variation than is the case in a linear display. Rescaling several linear histograms to a common logarithmic scale allows the combination of these linear data even though the linear ranges are different. This routine is presented as a program written in BASIC for execution on a microcomputer.  相似文献   

4.
Summary A method for quantitative determination of cross-relaxation rates of macromolecules in solution is developed. The method is based on the analysis of the intensities of cross peaks in 3D NOE-NOE spectra. The linear combination of the intensities of 3D peaks (spin-diffusion peaks, back-transfer peaks) results in an expression directly proportional to the cross-relaxation rate. The proposed approach allows to determine interproton distances in macromolecules more accurately.  相似文献   

5.
BACKGROUND: Two calibration methods have been proposed for determining the relation between the fluorescence ratio of a pH-sensitive fluorescent indicator and intracellular pH (pHi). The first method uses nigericin to clamp pHi to external pH (pHe) and the second is the null point method. We compared these different calibration methods, solution conditions, and temperatures by using flow cytometry and the fluorescent dye 1,5- (and-6)-carboxy seminaphtorhodafluor-1-acetoxymethyl ester with an NS0 cell line. METHODS: The nigericin method was performed in glucose solutions supplemented with KCl and 2-(N-morpholino)ethane sulphonic acid plus tris(hydroxymethyl)aminomethane (solution 1A), a mixture of K2HPO4/KH2PO4 in glucose-solution supplemented solutions (solution 2A), or bicarbonate buffered growth medium supplemented with K2HPO4/KH2PO4 (solution 2B); this allowed a range of pHe values to be used. The effect of temperature (22 degrees C or 37 degrees C) on the nigericin calibration curve was also investigated. The null point method was performed by using a series of solutions with a mixture of weak acid and base with a known pHi response. RESULTS: Using solution 1A as the calibration solution resulted in acidic values of pHi for cells cultured in medium as compared with the values achieved with solution 2A. Using solution 2B did not affect the calibration curve. For the temperatures considered in this study, there was no affect on the calibration curve, but temperature did affect the pHi value of cells in phosphate buffered saline. The pseudo-null point method used with flow cytometry resulted in a calibration curve that was significantly different (P<0.05) from that achieved using the nigericin method. CONCLUSIONS: Our data indicates that the choice of calibration solution can affect the reported pHi value; therefore, careful choice of solution is important.  相似文献   

6.
Conventional laser scanning microscopy for multiple fluorescent stains can be a useful tool if the problems of autofluorescence and cross-talk are eliminated. The technique of spectral imaging was employed to unmix five different fluorophores - ranging in emission from 435 to 665 nm - applied to a Pseudomonas aeruginosa biofilm with overlapping spectra and which was not possible using traditional channel mode operation. Using lambda scanning and linear unmixing, the five fluorophores could be distinguished with regions of differentiation apparent.  相似文献   

7.
The increase in fluorescence, upon interaction with several fluorescent dyes was found to depend on the base composition of DNA. 4',6-Diamidino-2-phenylindole-2 HCl and Hoechst 33258 which bind to AT base pairs show a logarithmic relation. This relation is linear when DNAs interact with mithramycin, chromomycin A3, and olivomycin, which bind to GC base pairs. Deviations from these relationships were observed for T2 DNA, containing hydroxymethylcytosine, and for 2C DNA, containing hydroxymethyluracil. On the basis of these data, a simple technique is proposed for determination of base composition. The presence of abnormal bases can be monitored by the use of given fluorophores. Fluorescence intensities were not modified upon linearization of covalently closed circular plasmid pBR322. Denaturation of lambda DNA was accompanied by a decrease of fluorescence, when complexed with the five dyes tested.  相似文献   

8.
Summary A generally applicable method for the automated classification of 2D NMR peaks has been developed, based on a Bayesian approach coupled to a multivariate linear discriminant analysis of the data. The method can separate true NMR signals from noise signals, solvent stripes and artefact signals. The analysis relies on the assumption that the different signal classes have different distributions of specific properties such as line shapes, line widths and intensities. As to be expected, the correlation network of the distributions of the selected properties affects the choice of the discriminant function and the final selection of signal properties. The classification rule for the signal classes was deduced from Bayes's theorem. The method was successfully tested on a NOESY spectrum of HPr protein from Staphylococcus aureus. The calculated probabilities for the different signal class memberships are realistic and reliable, with a high efficiency of discrimination between peaks that are true NOE signals and those that are not.  相似文献   

9.
Profile Hidden Markov Models (pHMMs) are widely used to model nucleotide or protein sequence families. In many applications, a sequence family classified into several subfamilies is given and each subfamily is modeled separately by one pHMM. A major drawback of this approach is the difficulty of coping with subfamilies composed of very few sequences.Correct subtyping of human immunodeficiency virus-1 (HIV-1) sequences is one of the most crucial bioinformatic tasks affected by this problem of small subfamilies, i.e., HIV-1 subtypes with a small number of known sequences. To deal with small samples for particular subfamilies of HIV-1, we employ a machine learning approach. More precisely, we make use of an existing HMM architecture and its associated inference engine, while replacing the unsupervised estimation of emission probabilities by a supervised method. For that purpose, we use regularized linear discriminant learning together with a balancing scheme to account for the widely varying sample size. After training the multiclass linear discriminants, the corresponding weights are transformed to valid probabilities using a softmax function.We apply this modified algorithm to classify HIV-1 sequence data (in the form of partial-length HIV-1 sequences and semi-artificial recombinants) and show that the performance of pHMMs can be significantly improved by the proposed technique.  相似文献   

10.
Highly polymorphic microsatellite loci offer great promise for gene mapping studies, but fulfillment of this potential will require substantial improvements in methods for accurate and efficient genotyping. Here, we report a genotyping method based on fluorescently labeled PCR primers and size characterization of PCR products using an automated DNA fragment analyzer. We capitalize on the availability of three distinct fluorescent dyes to label uniquely loci that overlap in size, and this innovation increases by threefold the number of loci that can be analyzed simultaneously. We label size standards with a fourth dye and combine these with the microsatellite PCR products in each gel lane. Computer programs provide very rapid and accurate sizing of microsatellite alleles and efficient data management. In addition, fluorescence signals are linear over a much greater range of intensity than conventional autoradiography. This facilitates multiplexing of loci (since signal intensities often vary greatly) and helps distinguish major peaks from artifacts, thereby improving genotyping accuracy.  相似文献   

11.
During cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1), many viral particles can be simultaneously transferred from infected to uninfected CD4 T cells through structures called virological synapses (VS). Here we directly examine how cell-free and cell-to-cell infections differ from infections initiated with cell-free virus in the number of genetic copies that are transmitted from one generation to the next, i.e., the genetic inheritance. Following exposure to HIV-1-expressing cells, we show that target cells with high viral uptake are much more likely to become infected. Using T cells that coexpress distinct fluorescent HIV-1 variants, we show that multiple copies of HIV-1 can be cotransmitted across a single VS. In contrast to cell-free HIV-1 infection, which titrates with Poisson statistics, the titration of cell-associated HIV-1 to low rates of overall infection generates a constant fraction of the newly infected cells that are cofluorescent. Triple infection was also readily detected when cells expressing three fluorescent viruses were used as donor cells. A computational model and a statistical model are presented to estimate the degree to which cofluorescence underestimates coinfection frequency. Lastly, direct detection of HIV-1 proviruses using fluorescence in situ hybridization confirmed that significantly more HIV-1 DNA copies are found in primary T cells infected with cell-associated virus than in those infected with cell-free virus. Together, the data suggest that multiploid inheritance is common during cell-to-cell HIV-1 infection. From this study, we suggest that cell-to-cell infection may explain the high copy numbers of proviruses found in infected cells in vivo and may provide a mechanism through which HIV preserves sequence heterogeneity in viral quasispecies through genetic complementation.  相似文献   

12.
The human immunodeficiency virus of type 1 (HIV-1) uses a programmed -1 ribosomal frameshift to produce the precursor of its enzymes, and changes in frameshift efficiency reduce replicative fitness of the virus. We used a fluorescent two-reporter system to screen for peptides that reduce HIV-1 frameshift in bacteria, knowing that the frameshift can be reproduced in Escherichia coli. Expression of one reporter, the green fluorescent protein (GFP), requires the HIV-1 frameshift, whereas the second reporter, the red fluorescent protein (RFP), is used to assess normal translation. A peptide library biased for RNA binding was inserted into the sequence of the protein thioredoxin and expressed in reporter-containing bacteria, which were then screened by fluorescence-activated cell sorting (FACS). We identified peptide sequences that reduce frameshift efficiency by over 50% without altering normal translation. The identified sequences are also active against different frameshift stimulatory signals, suggesting that they bind a target important for frameshifting in general, probably the ribosome. Successful transfer of active sequences to a different scaffold in a eukaryotic test system demonstrates that the anti-frameshift activity of the peptides is neither due to scaffold-dependent conformation nor effects of the scaffold protein itself on frameshifting. The method we describe identifies peptides that will provide useful tools to further study the mechanism of frameshift and may permit the development of lead compounds of therapeutic interest.  相似文献   

13.
Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis.  相似文献   

14.
BACKGROUND: The remarkable success of cytometry over the past 30 years is largely due to its uncanny ability to display populations that vastly differ in numbers and fluorescence intensities on one scale. The log transform implemented in hardware as a log amplifier or in software normalizes signals or channels so that these populations appear as clearly discernible peaks. With the advent of multiple fluorescence cytometry, spectral crossover compensation of these signals has been necessary to properly interpret the data. Unfortunately, because compensation is a subtractive process, it can produce negative and zero valued data. The log transform is undefined for these values and, as a result, forces computer algorithms to truncate these values, creating a few problems for cytometrists. Data truncation biases displays making properly compensated data appear undercompensated; thus, enticing many operators to overcompensate their data. Also, events truncated into the first histogram channel are not normally visible with typical two-dimensional graphic displays, thus hiding a large number of events and obscuring the true proportionality of negative distributions. In addition, the log transform creates unequal binning that can dramatically distort negative population distributions. METHODS AND RESULTS: The HyperLog transform is a log-like transform that admits negative, zero, and positive values. The transform is a hybrid type of transform specifically designed for compensated data. One of its parameters allows it to smoothly transition from a logarithmic to linear type of transform that is ideal for compensated data. CONCLUSIONS: The HyperLog transform is easily implemented in computer systems and results in display systems that present compensated data in an unbiased manner.  相似文献   

15.
We introduce a statistical model for microarray gene expression data that comprises data calibration, the quantification of differential expression, and the quantification of measurement error. In particular, we derive a transformation h for intensity measurements, and a difference statistic Deltah whose variance is approximately constant along the whole intensity range. This forms a basis for statistical inference from microarray data, and provides a rational data pre-processing strategy for multivariate analyses. For the transformation h, the parametric form h(x)=arsinh(a+bx) is derived from a model of the variance-versus-mean dependence for microarray intensity data, using the method of variance stabilizing transformations. For large intensities, h coincides with the logarithmic transformation, and Deltah with the log-ratio. The parameters of h together with those of the calibration between experiments are estimated with a robust variant of maximum-likelihood estimation. We demonstrate our approach on data sets from different experimental platforms, including two-colour cDNA arrays and a series of Affymetrix oligonucleotide arrays.  相似文献   

16.
Pneumotachograph require frequent calibration. Constant-flow methods allow polynomial calibration curves to be derived but are time consuming. The iterative syringe stroke technique is moderately efficient but results in discontinuous conductance arrays. This study investigated the derivation of first-, second-, and third-order polynomial calibration curves from 6 to 50 strokes of a calibration syringe. We used multiple linear regression to derive first-, second-, and third-order polynomial coefficients from two sets of 6-50 syringe strokes. In part A, peak flows did not exceed the specified linear range of the pneumotachograph, whereas flows in part B peaked at 160% of the maximum linear range. Conductance arrays were derived from the same data sets by using a published algorithm. Volume errors of the calibration strokes and of separate sets of 70 validation strokes (part A) and 140 validation strokes (part B) were calculated by using the polynomials and conductance arrays. Second- and third-order polynomials derived from 10 calibration strokes achieved volume variability equal to or better than conductance arrays derived from 50 strokes. We found that evaluation of conductance arrays using the calibration syringe strokes yields falsely low volume variances. We conclude that accurate polynomial curves can be derived from as few as 10 syringe strokes, and the new polynomial calibration method is substantially more time efficient than previously published conductance methods.  相似文献   

17.
Summary A new algorithm for simulation of two-dimensional NOESY spectra of DNA segments has been developed. For any given structure, NOE intensities are calculated using the relaxation matrix approach and a new realistic procedure is suggested for 1:1 comparison of calculated and experimental intensities. The procedure involves a novel method for scaling of calculated NOE intensities to represent volumes of digitised cross peaks in NOESY spectra. A data base of fine structures of all the relevant cross peaks with Lorentzian line shapes and in-phase components, is generated in a digitised manner by two-dimensional Fourier transformation of simulated time domain data, assuming a total intensity of 1.0 for each of the cross peaks. With this procedure, it is shown that the integrated volumes of these digitised cross peaks above any given threshold scale exactly as the total intensity of the respective peaks. This procedure eliminates the repetitive generation of digitised cross peaks by two-dimensional Fourier transformation during the iterative process of structure alteration and NOE intensity calculation and thus enhances the speed of DNA structure optimization. Illustrative fits of experimental and calculated spectra obtained using the new procedure are shown.[/p]  相似文献   

18.
Seven fluorescent microsphere colors can be used in a single experiment to estimate regional blood flow without correcting for spillover of emitted fluorescence. To extend the method to 13 colors, we compared the accuracy of three methods for spillover correction. Fixed wavelength intensities were corrected by matrix inversion, and synchronous scan spectra were corrected by least squares fit of an overdetermined system of linear equations and by least squares fit of a sum of Gaussian and Lorentzian functions. Correction methods were validated in pigs and sheep by simultaneous injections of radioactive microspheres and fluorescent microspheres of 7, 10, and 13 different colors. We induced extreme changes in flow to create regions with low fluorescent signals bound on either side by high fluorescent signals. Blood flow was determined by radioactivity and by fluorescence using both fixed excitation and emission wavelength pairs and synchronous scanning and then corrected for spillover. Correlation between fluorescent intensity and radioactivity were excellent for all three correction methods [R2 = 0.98 +/- 0.02 (mean +/- SD)]. Low-flow regions requiring large spillover correction had systematic errors for some color combinations in all methods. We conclude that for 13 fluorescent colors spillover error can be minimized so that all three correction methods provide accurate estimates of regional blood flow.  相似文献   

19.
R Peters  H Sauer  J Tschopp    G Fritzsch 《The EMBO journal》1990,9(8):2447-2451
A new type of single channel recording is described. Large pores were generated in the membranes of resealed human erythrocyte ghosts by incubation with perforin (cytolysin). The flux of the polar fluorescent probe Lucifer Yellow was measured in single ghosts by the fluorescence microphotolysis (photobleaching) technique. The distribution of flux rates for ghosts treated with a limiting perforin concentration showed equidistantly spaced peaks suggesting that subpopulations of ghosts with 0, 1 and 2 pores were resolved. Furthermore, distributions obtained for very different perforin concentrations could be well simulated by using one common value for the flux rate of the single pore (k = 4.65 x 10(-3) s) and assuming a Poisson distribution of pores among ghosts. The flux rate of the single pore corresponds to a pore radius of approximately 50 A, a value which is much smaller than that obtained previously by electron microscopic studies but which agrees well with recent electrical single channel recordings. Mature perforin pores were observed to be very stable. No closing events were detected at a time resolution of 0.2 s for a wide range of temperatures and Ca2+ concentrations. However, the formation of new pores was an unexpectedly slow process. Fluorescence microscopic single channel recording as introduced by this study is applicable to a variety of cellular systems and fluorescent probes and thus may complement the information obtainable by electrical single channel recording of anorganic ion fluxes.  相似文献   

20.
Summary Principles and techniques are discussed for measuring with high topological resolution local emission in fluorescing objects, using photographic negatives.Determination of fluorescence intensities is only possible when an unequivocal relation between the original local fluorescence emission intensities of the object, and the transmittances or densities recorded in the microfluorophotograph is known. This relation is formulated in the theoretical part.From this relation it can be concluded that the recorded intensities can be measured optimally when the optical density values produced by the fluorescence emission fall in the range of the linear portion of the Hurter and Driffield curve. In order to obtain this situation, a uniform, low-level preexposure of the film emulsion to (white) light is carried out prior to the actual fluorescence emission exposure. This pre-exposure acts to elevate the signal exposure to the linear (steeper) part of the H.-D. curve.Inhomogeneity of the excitation beam in the object field, or differences in film emulsion response to the light exposure, will result in erroneous optical densities recorded in the photographic negative. Correction for such artifacts could be obtained by addition of a low concentration of fluorophore to the mounting medium of the microscopic preparation. The overall fluorescent background produced in this way, enabled calibration of local fluorescence intensities in different parts of one fluorophotographic negative, and also of the intensities in different negatives taken from one microscopic preparation.The validity of this approach was checked by comparing data obtained from several photographic negatives of the same quinacrine-stained metaphase, taken with different exposure times to imitate fluctuations in excitation illumination, after conversion of the scanning data into emission intensity values with an algorithm based on the proposed theoretical relation.In another experiment, fluorescence emission intensities of Feulgenstained chromosomes which had been measured with a cytofluorometer, were compared with results obtained by conversion of the scanning data measured in the fluorophotographic negatives of the same metaphases. Both types of experiment confirmed the applicability of the procedure described.Supported by grant nr 28-169 of the Praeventiefonds, The Hague  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号