首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
T Fu  Y Sugimoto  T Oki  S Murakami  Y Okano  Y Nozawa 《FEBS letters》1991,281(1-2):263-266
We show here novel intracellular Ca2+ oscillation in v-K-ras-transformed NIH3T3 cells induced by mitogenic peptide hormones, bradykinin and bombesin, as well as fetal calf serum. Induction of the Ca2+ oscillation is strongly correlated with the malignant properties and inversely with PKC activities in vitro and in vivo. These results suggest that the mitogen-induced Ca2+ oscillation is negatively regulated by PKC, which modulates Ca2+ influx in v-K-ras-transformed NIH3T3 cells.  相似文献   

2.
Transfection of T24c-Ha-ras oncogene into NIH/3T3 fibroblasts resulted in the establishment of a transformed cell line (pT) that was tumorigenic when injected s.c. both into Swiss outbred nude mice and normal NIH inbred mice. The passage into nude mice, however, led to the development of a tumor variant (pT-nude) able to subsequently grow into sublethally x-irradiated but not into immunocompetent NIH mice. NIH mice immunized with this tumor variant developed a strong specific CTL response against the immunizing cell line, whereas the parental transformed pT cell line was not lysed. Clones were derived by limiting dilution from anti-pT-nude bulk population and were tested on a panel of transformed NIH/3T3 lines before and after their growth as tumor into nude mice. All of these lines were lysed by the Lyt-2+ CTL clones as a sole consequence of one in vivo passage into nude mice. The cross-reactive Ag were shown to be related to endogenous retroviral products as assessed by 1) immunoprecipitations of gp70, p15E, and p30 viral proteins in the nude variants but not in parental lines, and 2) by the ability of retroviruses from irradiated pT-nude cells to infect NIH/3T3 or pT lines making them susceptible to lysis by anti-pT-nude CTL clones. These results show that a single passage in nude mice can induce retrovirus-related, cell-surface Ag in transplanted neoplastic cells.  相似文献   

3.
Pituitary cells express purinergic receptor-channels (P2XR), the activation of which by ATP is associated with the facilitation of Ca2+ influx. Pharmacological, RT-PCR, and nucleotide sequence analyses confirm the presence of a wild type P2X2aR and a spliced isoform P2X2bR, which lacks a portion of carboxyl terminal amino acids. Wild type and spliced isoform receptors have a similar EC50 for ATP and time-course for activation, but the spliced isoform exhibits rapid and complete desensitization, whereas the wild type channel desensitizes slowly and incompletely. Deletion and insertion studies have revealed that a 6 residue sequence located in carboxyl tail (Arg371-Pro376) is required for sustained Ca2+ influx through wild type receptors. When co-expressed, the wild type and spliced channels form functional heteropolymeric channels. The patterns of Ca2+ signaling in the majority of pituitary cells expressing ATP-gated receptor-channels are highly comparable to those observed in cells co-transfected with P2X2aR and P2X2bR. ATP-induced [Ca2+]i response in pituitary cells is partially inhibited by nifedipine, a blocker of voltage-gated L-type Ca2+ channels, suggesting that P2X2R not only drive Ca2+ into the cell, but also activate voltage-gated Ca2+ entry. Our results indicate that ATP represents a paracrine and (or) autocrine factor in the regulation of Ca2+ signaling, and that its actions are mediated in part by heteropolymeric P2X2R.  相似文献   

4.
In mouse luteinized-granulosa cells (MGLC), ATP induces an increase in intracellular Ca2+ concentration by stimulating phospholipase C (PLC) associated with purinergic receptors, leading to production of inositol 1,4,5-trisphosphate (IP3) and subsequent release of Ca2+ from intracellular stores. In this study, we examined the cross-talk between the ryanodine receptors (RyR) and IP3 receptors (IP3R) in response to ATP in MGLC. Specifically, the effect of RyR modulators on ATP response was examined. The results showed that ATP-induced intracellular calcium elevation was abolished by inhibitors of the RyR, such as dantrolene (25 microM) and ryanodine (80 microM). When the MGLC were stimulated with activators of RyR, 2 microM ryanodine and 10 mM caffeine, the ATP-elicited response was decreased. These actions were independent of IP3 production stimulated by ATP. Hence, ATP-induced intracellular Ca2+ mobilization involves the coordinated action of both types of calcium release channels (CRCs). Using fluorescent probes, it was shown that IP3R is uniformly distributed throughout the cell; in contrast, RyR is mainly found around the nuclei. It is concluded that the IP3R and the RyR are functionally associated, and both play a role in the pattern of Ca2+ increase observed during purinergic stimulation of MGLC. This coupling may provide a highly efficient amplification mechanism for ATP stimulation of Ca2+ mobilization.  相似文献   

5.
In quiescent Balb-c mouse 3T3 fibroblasts, the application of whole or dialyzed 10% foetal calf serum elicits a biphasic electrical response, consisting of a transient outward current, flowing through Ca(2+)-activated K+ channels, followed by an inward one, lasting up to 15 min. On the basis of experiments with ion substitutions and blockers, the inward current can be attributed to the opening of cationic channels permeable to Na+ and Ca2+ ions. This current could mediate the calcium influx involved in the sustained elevation of [Ca2+]i that has been observed in many preparations in response to mitogen stimulation and that is involved in triggering cell proliferation.  相似文献   

6.
Cultured mouse fibroblasts (L cells) respond to whole C with a slow hyperpolarization. Among the C components tested, C1q was found to be most effective. In contrast, the cell did not respond to C1, in which the collagen-like region of the C1q molecule is masked. The C1q-induced hyperpolarizing response was inhibited by collagen or C1q-specific antisera. Human diploid skin fibroblasts (Flow 1,000 cells) also exhibited similar membrane potential changes in response to whole C or C1q. After repeated applications of C1q, the cell membrane became unresponsive (desensitized). The treatment of L cells with pronase E inhibited the C1q-induced response, whereas the response to ATP, which is known to interact to its own receptor, was still preserved. The reversal potential of C responses was close to the K+ equilibrium potential. The hyperpolarizing response was inhibited by a blocker of Ca2+-activated K+ channels in fibroblasts (quinine), by deprivation of extracellular Ca2+ or by a Ca2+ channel blocker (nifedipine). By means of Ca2+-selective microelectrodes, the cytosolic free Ca2+ concentration was found to increase from 126 to 206 nM upon stimulation of L cells with C1q. Using an agarose-well method, L cells were observed to migrate predominantly toward C1q or whole C. It is concluded that the fibroblasts have the C1q receptor sensitive to pronase E and that activation of C1q receptors gives rise to Ca2+ influx, triggering an increase in the cytosolic free Ca2+ ions, which in turn induces a hyperpolarizing response as a result of the stimulation of Ca2+-activated K+ channels and initiates chemotaxis to C1q.  相似文献   

7.
We attempted to test whether the differentiated NIH/3T3 fibroblasts could be differentiated into neuronal cells without any epigenetic modification. First, a neurosphere assay was carried out, and we successfully generated neurosphere-like cells by floating cultures of NIH/3T3 fibroblasts in neural stem cell medium. These spheres have the ability to form sub-spheres after three passages, and express the neural progenitor markers Nestin, Sox2, Pax6, and Musashi-1. Second, after shifting to a differentiating medium and culturing for an additional 8 days, cells in these spheres expressed the neuronal markers β-tubulin and neurofilament 200 and the astrocytic marker glial fibrillary acidic protein (GFAP). Finally, after treating the spheres with all-trans retinoic acid and taurine, the expression of β-tubulin was increased and the staining of photoreceptor markers rhodopsin and recoverin was observed. The present study shows that NIH/3T3 fibroblasts can generate neurosphere-like, neuron-like, and even photoreceptor-like cells under defined conditions, suggesting that the differentiated non-neuronal cells NIH/3T3 fibroblasts, but not pluripotent cells such as embryonic stem cells or induced pluripotent stem cells, may have the potential to be transdifferentiated into neuronal cells without adding any epigenetic modifier. This transdifferentiation may be due to the possible neural progenitor potential of NIH/3T3 fibroblasts that remains dormant under normal conditions.  相似文献   

8.
9.
We have previously established a murine flat revertant cell line R1 from an activated H-ras transformant EJ-NIH/3T3 by subjecting it to ethyl methanesulfonate. From the R1 cells, we cloned a mutated gelsolin gene His321 and have shown the inhibitory activity of His321 against EJ-NIH/3T3 tumors. Our present experiments were conducted to find out whether the His321 gene has any effects on untransformed NIH/3T3 fibroblasts. Rhodamine-phalloidin staining revealed that two NIH/3T3 clones expressing His321 (NIH/λ2S-3 and NIH/λ2S-6) form organized actin stress fibers as two clones transfected with the vector alone (NIH/neo-3 and NIH/neo-5). We also found that in a liquid medium, NIH/λ2S-3 and NIH/λ2S-6 grew more slowly than NIH/neo-3 and NIH/neo-5 and that the doubling times of the former were about 10 h slower than those of the latter. To investigate the effects of His321 on the signal transduction pathway necessary for cell growth, we stimulated the cell lines by prostaglandin E1 (PGE1), a platelet-derived growth factor (PDGF), or the epidermal growth factor (EGF). Although stimulation by PGE1 increased intercellular cyclic AMP in R1 cells, it did not do so in NIH/λ2S-3 and NIH/λ2S-6 cells. On the other hand, stimulation by PDGF or EGF induced far less DNA synthesis in NIH/λ2S-3 and NIH/λ2S-6 than in NIH/neo-3 and NIH/neo5. These results suggest that through the effects on the signal transduction pathway of PDGF and/or EGF His321-mutated gelsolin inhibits the growth of NIH/3T3.  相似文献   

10.
Reactive oxygen species (ROS) are produced in NIH3T3 fibroblasts during hypotonic stress, and H(2)O(2) potentiates the concomitant release of the organic osmolyte taurine (Lambert IH. J Membr Biol 192: 19-32, 2003). The increase in ROS production [5-(and-6)-carboxy-2', 7'-dichlorodihydrofluorescein diacetate fluorescence] is detectable after a reduction in the extracellular osmolarity from 335 mosM (isotonic) to 300 mosM and reaches a maximal value after a reduction to 260 mosM. The swelling-induced ROS production is reduced by the flavoprotein inhibitor diphenylene iodonium chloride (25 microM) but is unaffected by the nitric oxide synthase inhibitor N omega-nitro-l-arginine methyl ester, indicating that the volume-sensitive ROS production is NADPH oxidase dependent. NIH3T3 cells express the NADPH oxidase components: p22 phox, a NOX4 isotype; p47 phox; and p67 phox (real-time PCR). Exposure to the Ca2+-mobilizing agonist ATP (10 microM) potentiates the release of taurine but has no effect on ROS production under hypotonic conditions. On the other hand, addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) or the lipid messenger lysophosphatidic acid (LPA, 10 nM) potentiates the swelling-induced taurine release as well as the ROS production. Overexpression of Rac1 or p47 phox or p47 phox knockdown [small interfering (si)RNA] had no effect on the swelling-induced ROS production or taurine release. NOX4 knockdown (siRNA) impairs the increase in the ROS production and the concomitant taurine release following osmotic exposure. It is suggested that a NOX4 isotype plus p22 phox account for the swelling-induced increase in the ROS production in NIH3T3 cells and that the oxidase activity is potentiated by PKC and LPA but not by Ca2+.  相似文献   

11.
The action of exogenous ATP on cytoplasmic free Ca2+ ([Ca2+]i) was studied in insulin secreting cells using fura-2. Stimulation of clonal pancreatic beta-cells (HIT) with ATP (range 2-20 microM) evoked a sustained elevation in [Ca2+]i. ATP selectively promoted Ca2+ influx and not Ca2+ mobilization since (1) the effect required external Ca1+ and (2) was observed in cells in which internal stores were depleted with ionomycin (3) the rate of Mn2+ influx, measured as the quenching of the fura-2 signal, was accelerated by ATP. The action of ATP was unaffected by the voltage-sensitive Ca2+ channel blockers nifedipine and verapamil as well as by a depolarizing concentration of K+. The effect on [Ca2+]i was highly specific for ATP since AMP, ADP, adenosine 5'-[gamma-thio]triphosphate, adenosine 5'-[beta, gamma-methylene]triphosphate, GTP and adenosine were ineffective. In normal pancreatic islet cells, both exogenous ATP (range 0.2-2 microM) and ADP induced a transient Ca2+ elevation that did not require external Ca2+. The nucleotide specificity of the effect on [Ca2+]i suggests that ATP activates P2 gamma purinergic receptors in normal beta-cells. Thus, ATP evokes a Ca2+ signal in clonal HIT cells and normal islet cells by different transducing systems involving distinct purinoreceptors. A novel mechanism for increasing [Ca2+]i by extracellular ATP is reported in HIT cells, since the nucleotide specificity and the selective activation of Ca2+ influx without mobilization of internal Ca2+ stores cannot be explained by mechanisms already described in other cell systems.  相似文献   

12.
ATP stimulates calcium influx in primary astrocyte cultures   总被引:4,自引:0,他引:4  
The effect of ATP and other purines on 45Ca uptake was studied in primary cultures of rat astrocytes. Treatment of the cells with ATP for 1 to 30 min brought about an increase in cellular 45Ca. Stimulation of calcium influx by ATP was investigated using a 90 sec exposure to 45Ca and over a concentration range of 0.1 nM to 3 mM; a biphasic dose-response curve was obtained with EC50 values of 0.3 nM and 9 uM, indicating the presence of low and high affinity purinergic binding sites. Similar levels of 45Ca influx at 90 sec were observed with ATP, ADP and adenosine (all at 100 uM). Prior treatment of the cultures with LaCl3 blocked the purine-induced 45Ca influx. These findings indicate that one pathway for calcium entry in astrocytes involves purinergic receptor-operated, calcium channels.  相似文献   

13.
Growth factor-induced cell migration underlies various physiological and pathological processes. The mechanisms by which growth factors regulate cell migration are not completely understood. Although intracellular elevation of Ca2+ is known to be critical in cell migration, the source of this Ca2+ elevation and the mechanism by which Ca2+ modulates this process in fibroblast cells are not well defined. Here we show that increase of cellular Ca2+ through Ca2+ influx, rather than Ca2+ release from intracellular stores, is essential for growth factor-induced fibroblast cell migration. Voltage-gated L-type Ca2+ channels, previously known to exist in excitable cells such as neurons and muscle cells, are shown here to be present in fibroblasts as well. Furthermore, these channels are responsible for the Ca2+ influx. L-type Ca2+ channel inhibitors block growth factor-induced Ca2+ influx and fibroblast cell migration. One mechanism by which Ca2+ signals control cell migration is to regulate the contraction of the trailing edge of migrating fibroblasts; this process is controlled by the small GTPase Rho in fast migrating cells such as leukocytes. Downstream of Ca2+, both calmodulin and myosin light chain kinase, but not calcineurin, are involved leading to phosphorylation of the myosin light chain at the trailing end. Thus, trailing edge contraction is critically regulated by Ca2+ influx through L-type Ca2+ channels in growth factor-induced fibroblast cell migration.  相似文献   

14.
Stimulation of suspensions of fura-2-loaded human neutrophils with ATP resulted in an elevation in cytosolic free calcium concentration ([Ca2+]i) from a basal value of 0.1 microM to a transient peak of 1 microM. The response is due to Ca2+ release from intracellular stores and influx of extracellular Ca2+. Release from intracellular stores is shown by the response in the absence of extracellular Ca2+. The greater and more maintained response in the presence of extracellular Ca2+ is indicative of stimulated Ca2+ entry and a stimulated influx pathway was confirmed by using Mn2+ as a surrogate for Ca2+. A variety of purinergic agonists were used to characterize the pharmacology of this [Ca2+]i response. Their rank order of potency was ATP greater than adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) greater than ADP much greater than 2-methylthioadenosine 5'-triphosphate (2Me-SATP), where ATP had an EC50 value of 3 microM and 2MeSATP had an EC50 value of 1000 microM. Adenosine 5'-O-(2-thiodiphosphate) (ADP beta S), adenylyl (alpha,beta-methylene)- diphosphonate (AMPCPP) and adenosine were inactive at 1 mM. These results suggest that neutrophils have a novel type of purinergic P2 receptor that is neither P2x nor P2y.  相似文献   

15.
The ability of adherent cells such as fibroblasts to enter the cell cycle and progress to S phase is strictly dependent on the extent to which individual cells can attach to and spread on a substratum. Here we have used microengineered adhesive islands of 22 and 45 mum diameter surrounded by a nonadhesive substratum of polyhydroxyl methacrylate to accurately control the extent to which individual Swiss 3T3 fibroblasts may spread. The effect of cell shape on mitogen-evoked Ca2+ signaling events that accompany entry into the cell cycle was investigated. In unrestricted cells, the mitogens bombesin and fetal calf serum evoked a typical biphasic change in the cytoplasmic free Ca2+ concentration. However, when the spreading of individual cells was restricted, such that progression to S phase was substantially reduced, both bombesin and fetal calf serum caused a rapid transient rise in the cytoplasmic free Ca2+ concentration but failed to elicit the normal sustained influx of Ca2+ that follows Ca2+ release. As expected, restricting cell spreading led to the loss of actin stress fibers and the formation of a ring of cortical actin. Restricting cell shape did not appear to influence mitogen-receptor interactions, nor did it influence the presence of focal adhesions. Because Ca2+ signaling is an essential component of mitogen responses, these findings implicate Ca2+ influx as a necessary component of cell shape-dependent control of the cell cycle.  相似文献   

16.
Abstract

The PID1/NYGGF4/PCLI1 gene encodes for a protein with a phosphotyrosine-binding domain, which interacts with the lipoprotein receptor-related protein 1. Previous work by us and others suggested a function of the gene in cell proliferation of NIH3T3 fibroblasts and 3T3-L1 pre-adipocytes. The molecular characterization of PCLI1 protein, ectopically expressed in NIH3T3 fibroblasts, revealed two phosphorylation sites at Ser154 and Ser165. In order to clarify the functions of this gene, we analyzed the effects of its downregulation on cellular proliferation and cell cycle progression in NIH3T3 cell cultures. Downregulation of PID1/NYGGF4/PCLI1 mRNA levels by short hairpin RNAs (shRNAs) elicited decreased proliferation rate in mammalian cell lines; cell cycle analysis of serum-starved, synchronized NIH3T3 fibroblasts showed an increased accumulation of shRNA-interfered cells in the G1 phase. Decreased levels of FOS and MYC mRNAs were accordingly associated with these events. The molecular scenario emerging from our data suggests that PID1/NYGGF4/PCLI1 controls cellular proliferation and cell cycle progression in NIH3T3 cells.  相似文献   

17.
Majumdar A  Ghosh A  Datta S  Prudner BC  Datta B 《Biochemistry》2010,49(47):10146-10157
In many tumor cells, the activation and activity of extracellular signal-regulated kinases (ERK1/2) are very high because of the constitutive activation of the Ras-mediated signaling pathway. Here, we ectopically expressed the human homologue of rat eukaryotic initiation factor 2-associated glycoprotein, p67/MetAP2, in EGF-treated mouse embryonic NIH3T3 fibroblasts and C2C12 myoblasts and NIH3T3 cell lines expressing the constitutively active form of MAP kinase kinase (MEK) to inhibit the activation and activity of ERK1/2 MAP kinases. In addition, we also ectopically expressed rat p67/MetAP2 in oncogenic Ras-induced transformed NIH3T3 fibroblasts and inhibited their transformed phenotype both in culture and in athymic nude mice possibly by inhibiting angiogenesis. This inhibition of ERK1/2 MAP kinases is due to the direct binding with rat p67/MetAP2, and this leads to the inhibition of activity of ERK1/2 MAP kinases both in vitro and in vivo. Furthermore, expression of p67/MetAP2 siRNA in both NIH3T3 fibroblasts and C2C12 myoblasts causes activation and activity of ERK1/2 MAP kinases. Our results thus suggest that ectopic expression of rat p67/MetAP2 in transformed cells can inhibit the tumorigenic phenotype by inhibiting the activation and activity of ERK1/2 MAP kinases and, thus, that p67/MetAP2 has tumor suppression activity.  相似文献   

18.
Establishment of salivary cell lines retaining normal morphological and physiological characteristics is important in the investigation of salivary cell function. A submandibular gland cell line, SMG-C6, has recently been established. In the present study, we characterized the phosphoinositide (PI)-Ca2+ signaling system in this cell line. Inositol 1,4,5-trisphosphate(1,4,5-IP3) formation, as well as Ca2+ storage, release, and influx in response to muscarinic, alpha1-adrenergic, P2Y-nucleotide, and cytokine receptor agonists were determined. Ca2+ release from intracellular stores was strongly stimulated by acetylcholine (ACh) and ATP, but not by norepinephrine (NA), epidermal growth factor (EGF), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFalpha). Consistently, 1, 4,5-IP3 formation was dramatically stimulated by ACh and ATP. ACh-stimulated cytosolic free Ca2+ concentration [Ca2+]i increase was inhibited by ryanodine, suggesting that the Ca2+-induced Ca2+ release mechanism is involved in the ACh-elicited Ca2+ release process. Furthermore, ACh and ATP partially discharged the IP3-sensitive Ca2+ store, and a subsequent exposure to thapsigargin (TG) induced further [Ca2+]i increase. However, exposure to TG depleted the store and a subsequent stimulation with ACh or ATP did not induce further [Ca2+]i increase, suggesting that ACh and ATP discharge the same storage site sensitive to TG. As in freshly isolated submandibular acinar cells, exposure to ionomycin and monensin following ACh or TG induced further [Ca2+]i increase, suggesting that IP3-insensitive stores exist in SMG-C6 cells. Ca2+ influx was activated by ACh, ATP, or TG, and was significantly inhibited by La3+, suggesting the involvement of store-operated Ca2+ entry (SOCE) pathway. These results indicate that in SMG-C6 cells: (i) Ca2+ release is triggered by muscarinic and P2Y-nucleotide receptor agonists through formation of IP3; (ii) both the IP3-sensitive and -insensitive Ca2+ stores are present; and (iii) Ca2+ influx is mediated by the store-operated Ca2+ entry pathway. We conclude that Ca2+ regulation in SMG-C6 cells is similar to that in freshly isolated SMG acinar cells; therefore, this cell line represents an excellent SMG cell model in terms of intracellular Ca2+ signaling.  相似文献   

19.
Lee YH  Kim SY  Kim JR  Yoh KT  Baek SH  Kim MJ  Ryu SH  Suh PG  Kim JH 《Life sciences》2000,67(7):827-837
Oxidative stress has been implicated in a wide range of cellular damage which includes DNA oxidation, membrane lipid peroxidation, and apoptosis. In our study, we found that overexpression of PLC-beta1 in NIH3T3 fibroblasts protected them from cell death occuring in response to oxidative stress. Cell death caused by treatment with prooxidant tert-butylhydroperoxide (TBH), H2O2, or CdCl2 was considerably suppressed in PLC-beta1 overexpressed NIH/beta1-14 cells in comparison to control NIH/neo cells. However, overexpression of PLC-beta1 failed to protect the cells from toxicity by diamide or KCN. In addition, while accumulation of c-fos mRNA was observed within 30 min of TBH treatment in vector transfected NIH/neo cells, TBH-induced c-fos mRNA generation was completely suppressed in NIH/beta1-14 cells, while that of c-jun and GAPDH was not affected. These findings suggest that PLC-beta1 may play a role in process that can protect cells from oxidative stress-induced cell death.  相似文献   

20.
The role of cyclic ADP-ribose in the amplification of subcellular and global Ca2+ signaling upon stimulation of P2Y purinergic receptors was studied in 3T3 fibroblasts. Either (1) 3T3 fibroblasts (CD38- cells), (2) 3T3 fibroblasts preloaded by incubation with extracellular cyclic ADP-ribose (cADPR), (3) 3T3 fibroblasts microinjected with ryanodine, or (4) 3T3 fibroblasts transfected to express the ADP-ribosyl cyclase CD38 (CD38+ cells) were used. Both preincubation with cADPR and CD38 expression resulted in comparable intracellular amounts of cyclic ADP-ribose (42.3 +/- 5.2 and 50.5 +/- 8.0 pmol/mg protein). P2Y receptor stimulation of CD38- cells yielded a small increase of intracellular Ca2+ concentration and a much higher Ca2+ signal in CD38-transfected cells, in cADPR-preloaded cells, or in cells microinjected with ryanodine. Confocal Ca2+ imaging revealed that stimulation of ryanodine receptors by cADPR or ryanodine amplified localized pacemaker Ca2+ signals with properties resembling Ca2+ quarks and triggered the propagation of such localized signals from the plasma membrane toward the internal environment, thereby initiating a global Ca2+ wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号