首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mature retinal ganglion cells (RGCs) do not normally regenerate severed axons after optic nerve injury and show only little neurite outgrowth in culture. However, RGCs can be transformed into an active regenerative state after lens injury (LI) enabling these neurons to regrow axons in vitro and in vivo. In the current study we investigated the role of CK1δ and CK1ε activity in neurite outgrowth of LI stimulated RGCs and nerve growth factor (NGF) stimulated PC12 cells, respectively. In both cell types CK1δ and ε were localized in granular particles aligned at microtubules in neurites and growth cones. Although LI treatment did not measurably affect the expression of CK1δ and ε, it significantly elevated the specific kinase activity in the retina. Similarly, CK1δ/ε specific kinase activity was also elevated in NGF treated PC12 cells compared with untreated controls. Neurite extension in PC12 cells was associated with a change in the activity of CK1δ C-terminal targeting kinases, suggesting that activity of these kinases might be necessary for neurite outgrowth. Pharmacological inactivation of CK1δ and ε markedly compromised neurite outgrowth of both, PC12 cells and LI stimulated RGCs in a concentration dependent manner. These data provide evidence for a so far unknown, but essential role of CK1 isoforms in neurite growth.  相似文献   

2.
Rat pheochromocytoma cells, PC12 cells, undergo differentiation in response to nerve growth factor (NGF). Although the Ras-MAP kinase signaling pathway has been shown to play a central role in the response to NGF, the precise mechanism which induces differentiation remains unclarified. Recently, several γ-lactam-related microbial products were identified to induce neurite outgrowth in neuroblastoma cells. Therefore, we synthesized a series of γ-lactam-related compounds and tested for their ability to induce neurite outgrowth in PC12 cells. We found that two compounds, MT-19 and MT-20, induced neurite outgrowth at concentrations as low as 1 μg/ml. MT-19 and MT-20 have ann-hexadecyl group and ann-dodecyl group, respectively, at the position N-1 of the γ-lactam ring, and the modification of this group leads to partial or complete loss of activity. In addition, the modification of the methyl and hydroxyl group at C-5 leads to complete loss of activity, indicating a strict structure–activity relationship. Interestingly, MT-19 and MT-20 induced neurite outgrowth of PC12 cells which lack normal Ras function. Furthermore, these compounds did not induce MAP kinase activation, suggesting that MT-19 and MT-20 do not require the Ras-MAP kinase signaling pathway which is shown to be necessary and sufficient for NGF-induced neurite outgrowth. Consistent with this, none of the early- or late-response genes tested, which includefos, zif268, Nur77, vgf,and transin, was induced. However, the protein level of three neurofilaments was increased after the incubation with these compounds. Since the level of other cytoskeleton proteins including actin and tubulin remained constant, MT-19 and MT-20 specifically affected neurofilament synthesis and/or turnover. Taken together, these findings indicate that MT-19 and MT-20 induce neurite outgrowth by activating the downstream target of MAP kinase or by a novel mechanism which is distinct from the NGF-activated pathway.  相似文献   

3.
4.
The small GTPase Rab35 is a molecular switch for membrane trafficking that regulates a variety of cellular events. We previously showed that Rab35 promotes neurite outgrowth of nerve growth factor-stimulated PC12 cells through interaction with centaurin-β2 (also called ACAP2). Centaurin-β2 is the only Rab35-binding protein reported thus far that exclusively recognizes Rab35 and does not recognize any of the other 59 Rabs identified in mammals, but the molecular basis for the exclusive specificity of centaurin-β2 for Rab35 has remained completely unknown. In this study, we performed deletion and mutation analyses and succeeded in identifying the residues of Rab35 and centaurin-β2 that are crucial for formation of a Rab35·centaurin-β2 complex. We found that two threonine residues (Thr-76 and Thr-81) in the switch II region of Rab35 are responsible for binding centaurin-β2 and that the same residues are dispensable for Rab35 recognition by other Rab35-binding proteins. We also determined the minimal Rab35-binding site of centaurin-β2 and identified two asparagine residues (Asn-610 and Asn-691) in the Rab35-binding site as key residues for its specific Rab35 recognition. We further showed by knockdown-rescue approaches that neither a centaurin-β2 binding-deficient Rab35(T76S/T81A) mutant nor a Rab35 binding-deficient centaurin-β2(N610A/N691A) mutant supported neurite outgrowth of PC12 cells, thereby demonstrating the functional significance of the Rab35/centaurin-β2 interaction during neurite outgrowth of PC12 cells.  相似文献   

5.
SUMMARY 1. C6 glioma cells were transfected with two constructs carrying C-terminal laminin 1-chain sequences of 117 and 114 bp length, respectively. These sequences are specifically known to code for peptides which have neurite-promoting activity.2. The stable expression and secretion of the two peptides was detected by Northern and Western blot analysis.3. Primary neuronal cultures derived from embryonic mouse forebrain were cocultured with these transfected cells and exhibited a substantial increase in neurite outgrowth and in survival time. Conditioned media from the transfected cells generated similar effects.4. Organotypic cultures from embryonic mouse brain were used as a second system as being closer to the in vivo situation. Again, coculture of brain slices with transfected cells or treatment with laminin peptide-containing media increased neuronal outgrowth.  相似文献   

6.
Yang H  Cheng X  Yao Q  Li J  Ju G 《Neurochemical research》2008,33(11):2269-2280
Thymosin β4 (Tβ4) is a major actin-sequestering peptide widely distributed in mammalian tissues including the nervous system. The presence of this peptide in the nervous system likely plays a role in synaptogensis, axon growth, cell migration, and plastic changes in dendritic spine. However, the effects of Tβ4 on the survival of neurons and axonal outgrowth have still not been fully understood. So far it is not clear if the effects of Tβ4 are associated with L1 functions. In the present study, we hypothesized that Tβ4-induced up-regulation of L1 synthesis could be involved in the survival and axon outgrowth of cultured spinal cord neurons. To test this hypothesis, primarily cultured neurons were prepared from the mouse spinal cord and treated with various concentrations of Tβ4 ranging from 0.1 to 10 μg/ml. The analysis of L1 mRNA expression and protein synthesis in neurons was then carried out using RT-PCR and western blot assays, respectively. After the addition of Tβ4 to cultures, cells were then treated with antibodies against distinct domains of L1-Fc. Subsequently, β-tubulin III and L1 double-labeled indirect immunofluorescence was carried out. Meanwhile, L1 immunofluorescent reactivity was analyzed and compared in cells treated with Tβ4. Furthermore, the number of β-tubulin III-positive cells and neurite lengths were measured. We found that Tβ4 enhanced L1 expression in a dose-dependent manner, and the highest L1 mRNA and protein synthesis in cells increased by more than 2.1- and 2.3-fold in the presence of Tβ4 at identical concentrations, respectively. Moreover, it also dose dependently enhanced neurite outgrowth and neuronal survival. Compared to conditions without Tβ4, the length of neurite and neuronal survival increased markedly in presence of 0.5, 1, and 5 μg/ml Tβ4, respectively, whereas the effects of Tβ4 were significantly attenuated or inhibited in the process of L1-Fc antibodies treatment. These above results indicate that the promotive effect of Tβ4 on the survival and neurite outgrowth of cultured spinal cord neurons might be mediated, at least in part via a stimulation of the production of L1 in the neurons.  相似文献   

7.
Hypoxia-induced retinal ganglion cell (RGC) death has been proposed to be the critical event in the pathophysiology of glaucoma. Therefore, delaying or halting RGC degeneration, known as neuroprotection, is a novel and promising approach with potential clinical applications for treating glaucoma. In this study, we investigate hypoxia-induced cell death of RGCs and the underlying mechanisms of N-acetylcysteine (NAC) as a neuroprotectant. To establish a model for chemical hypoxia-induced cell death, RGC-5 cells were treated with the hypoxia mimetic cobalt chloride (CoCl2). Following CoCl2 exposure, significant levels of apoptotic and autophagic cell death were observed in RGC-5 cells, evidenced by lysosome dysfunction and autophagosome formation. Pretreating RGC-5 cells with NAC significantly counteracted the autophagic cell death. NAC-mediated neuroprotection was attributed to the direct scavenging of reactive oxygen species and was mediated by targeting the hypoxia-inducible factor-1?? pathway via the BNIP3 and PI3K/Akt/mTOR pathways. These results provide insights into the degeneration of RGCs and present a potential clinical application for NAC as a neuroprotectant.  相似文献   

8.
Although there are numerous reports of carbohydrates enriched in cancer cells, very few studies have addressed the functions of carbohydrates present in normal cells that decrease in cancer cells. It has been reported that core3 O-glycans are synthesized in normal gastrointestinal cells but are down-regulated in cancer cells. To determine the roles of core3 O-glycans, we transfected PC3 and LNCaP prostate cancer cells with β3-N-acetylglucosaminyltransferase-6 (core3 synthase) required to synthesize core3 O-glycans. Both engineered cell lines exhibited reduced migration and invasion through extracellular matrix components compared with mock-transfected cells. Moreover we found that α2β1 integrin acquired core3 O-glycans in cells expressing core3 synthase with decreased maturation of β1 integrin, leading to decreased levels of the α2β1 integrin complex, decreased activation of focal adhesion kinase, and reduced lamellipodia formation. Upon inoculation into the prostate of nude mice, PC3 cells expressing core3 O-glycans produced much smaller tumors without metastasis to the surrounding lymph nodes in contrast to robust tumor formation and metastasis seen in mock-transfected PC3 cells. Similarly LNCaP cells expressing core3 O-glycans barely produced subcutaneous tumors in contrast to robust tumor formation by mock-transfected LNCaP cells. These findings indicate that addition of core3 O-glycans to β1 and α2 integrin subunits in prostate cancer cells suppresses tumor formation and tumor metastasis.Cancer cells often express surface carbohydrates different from normal cells (1). One such change is expression of sialyl Lewis X and Lewis B blood group antigens in cancer cells (2, 3). These structural elements are seen as capping oligosaccharides attached to the underlying glycan backbone where they likely function as ligands for cell adhesion molecules.The structure of underlying glycans also changes during malignant transformation and differentiation. In particular, there are several reports that an increase in the β1,6-N-acetylglucosaminyl branch in N-glycans synthesized by β1,6-N-acetylglucosaminyltransferase-V is associated with oncogenic transformation (47). Similar structural changes are seen in mucin-type O-glycans, which have N-acetylgalactosamine at the reducing end linked to polypeptide threonine or serine residues. Addition of different carbohydrate residues to N-acetylgalactosamine confers a variety of backbone structures on mucin-type O-glycans; the most abundant of those are classified as core1, core2, core3, and core4 O-glycans (8) (Fig. 1). Among these O-glycans, the synthesis of the core2 branch has been extensively studied particularly because conversion of core1 to core2 O-glycans was observed in T cell activation (9). Expression of core2 branch apparently represents an oncodifferentiation antigen because core2 branched O-glycans are synthesized in early stages of T cell differentiation, down-regulated in mature T cells, and reappear in T cell leukemia and immune deficiencies such as AIDS and Wiskott-Aldrich syndrome (for a review, see Ref. 10). In addition, overexpression of core2 O-glycans is seen in many cancers, including lung and breast carcinoma cells (11, 12).Open in a separate windowFIGURE 1.Biosynthetic pathways of mucin-type O-glycans. N-Acetylgalactosamine is transferred to a serine or threonine residue in a polypeptide. Resultant GalNAcα1→Ser/Thr is converted by core3 synthase (β3GnT-6) to GlcNAcβ1→3GalNAcα1→Ser/Thr (core3). Core3 is then converted to core4 by C2GnT-2 (C2GnT-M). GalNAcα1→Ser/Thr is also converted to core1, Galβ1→3GalNAcα1→Ser/Thr, by core1 synthase. Core1 is then converted to core2 by C2GnT-1, C2GnT-2, and C2GnT-3.By contrast, core3 and core4 O-glycans are synthesized in normal cells but apparently down-regulated in gastric and colorectal carcinoma (13, 14). Core3 O-glycans are synthesized by core3 synthase (β3GnT-6),2 which adds β1,3-linked N-acetylglucosamine to N-acetylgalactosamine at the reducing terminus (15) (Fig. 1). Iwai et al. (16) showed that forced expression of core3 synthase in human fibrosarcoma HT1080 FP-10 cells resulted in significant reduction in the formation of lung tumor foci in mice after intravenous injection of tumor cells through a tail vein. However, the same study did not address whether the expression of core3 influences tumor metastasis because the cancer cells were intravenously injected and no primary tumor was formed to spread into the lung as metastasis in contrast to the other studies (17, 18). Core4 O-glycan is synthesized by addition of β1,6-linked N-acetylglucosamine to a core3 acceptor by core2 β1,6-N-acetylglucosamine M type (C2GnT-M) or C2GnT-2 (19, 20) (Fig. 1). Huang et al. (21) reported that C2GnT-M is down-regulated in colonic carcinoma cells and that forced expression of C2GnT-M in HCT116 colonic carcinoma cells significantly decreased cell invasion and subcutaneous tumor formation. How up-regulation of core3 and core4 O-glycans influences the pathophysiology of cells expressing core3 and core4 O-glycans has not been addressed.Cell-extracellular matrix interaction plays an essential role during acquisition of migration and invasive behavior of cancer cells. For example, α2β1 integrin is the major receptor for collagen (22) and most abundantly expressed in prostate cancer cells (23). Glycosylation on integrin is one of the important modulators of integrin functions, and many glycan structures, mainly N-glycans, have been studied. An increase of bisecting GlcNAc structure on α5β1 integrin inhibits the cell spreading and migration (24), and induced β1,6-GlcNAc sugar chains on N-glycans of β1 integrin result in stimulation of cell migration (25). However, it has not been addressed whether changes in O-glycans affect integrin maturation and functions.To determine the role of core3 O-glycans in tumor formation and metastasis, we analyzed PC3 and LNCaP human prostate cancer cells. We found that these cell lines express only small amounts of detectable core3 synthase; thus we transfected the cell lines with core3 synthase. Core3 synthase-transfected PC3 and LNCaP cells expressed increased amounts of core3 O-glycans in α2β1 integrin, showed the reduced maturation of β1 integrin and low levels of α2β1 integrin formation, migrated less efficiently through collagen and other extracellular matrix components, and were less invasive than mock-transfected cells. Moreover those cells exhibited decreased activation of focal adhesion kinase (FAK) compared with mock-transfected cells. Significantly PC3 cells expressing core3 O-glycans produced almost no primary tumors in the prostate and formed much fewer metastases in the draining lymph nodes than mock-transfected cells. Similarly LNCaP cells expressing core3 O-glycans produced much smaller subcutaneous tumors than mock-transfected LNCaP cells. These findings indicate that addition of core3 O-glycans to the α2β1 integrin leads to decreased cell migration and invasion, resulting in decreased prostate tumor formation and metastasis.  相似文献   

9.
10.
11.
The cellular effects of eleven compounds including chalcone glycosides isolated from Brassica rapa L. ‘hidabeni’ and their synthetic derivatives were studied in rat pheochromocytoma PC12 cells. Of the compounds tested, 4′-O-β-d-glucopyranosyl-3′,4-dimethoxychalcone (A2) significantly increased the levels of the phosphorylated forms of extracellular signal-regulated kinases 1/2 (ERK 1/2), p38 mitogen-activated protein kinase (p38MAPK), and stress-activated protein kinases/Jun amino-terminal kinases (JNK/SAPK), but it did not affect Akt. Nerve growth factor (NGF), a well-known neurotrophic factor, increased the levels of phosphorylated ERK1/2, JNK/SAPK, and Akt but not p38MAPK, which may mediate marked neurite outgrowth. Signals evoked by A2 shared common characteristics with those induced by NGF; therefore, we evaluated the neuritogenic activity of A2 and found it induced only weak neurite outgrowth. However, this effect was enhanced by pre-treatment with a p38MAPK inhibitor, suggesting that the phosphorylation of p38MAPK down-regulated neurite outgrowth. From the results of this study, it was found that A2 in combination with a p38MAPK inhibitor can induce NGF-like effects. Hence, a combination of chalcone glycosides containing A2 and a p38MAPK inhibitor increases the likelihood that chalcone glycosides could be put to practical use in the form of drugs or alternative medicines to maintain neural health.  相似文献   

12.

Background

Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1) is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2) synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC) between Leydig cells.

Methodology/Principal Findings

Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T) were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP), respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC.

Conclusions

Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.  相似文献   

13.
Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that signals through the interaction of type I (TβRI) and type II (TβRII) receptors to activate distinct intracellular pathways. TAK1 is a serine/threonine kinase that is rapidly activated by TGF-β1. However, the molecular mechanism of TAK1 activation is incompletely understood. Here, we propose a mechanism whereby TAK1 is activated by TGF-β1 in primary mouse mesangial cells. Under unstimulated conditions, endogenous TAK1 is stably associated with TβRI. TGF-β1 stimulation causes rapid dissociation from the receptor and induces TAK1 phosphorylation. Deletion mutant analysis indicates that the juxtamembrane region including the GS domain of TβRI is crucial for its interaction with TAK1. Both TβRI-mediated TAK1 phosphorylation and TGF-β1-induced TAK1 phosphorylation do not require kinase activity of TβRI. Moreover, TβRI-mediated TAK1 phosphorylation correlates with the degree of its association with TβRI and requires kinase activity of TAK1. TAB1 does not interact with TGF-β receptors, but TAB1 is indispensable for TGF-β1-induced TAK1 activation. We also show that TRAF6 and TAB2 are required for the interaction of TAK1 with TβRI and TGF-β1-induced TAK1 activation in mouse mesangial cells. Taken together, our data indicate that TGF-β1-induced interaction of TβRI and TβRII triggers dissociation of TAK1 from TβRI, and subsequently TAK1 is phosphorylated through TAB1-mediated autophosphorylation and not by the receptor kinase activity of TβRI.Members of the transforming growth factor-β (TGF-β)3 superfamily are key regulators of various biological processes such as cellular differentiation, proliferation, apoptosis, and wound healing (1, 2). TGF-β1, the prototype of TGF-β family, is a potent inducer of extracellular matrix synthesis and is well established as a central mediator in the final common pathway of fibrosis associated with progressive kidney diseases (3, 4). Upon ligand stimulation, TGF-β type I (TβRI) and type II (TβRII) receptors form heterotetrameric complexes, by which TβRI is phosphorylated in the GS domain and activated. Smad signaling pathway is well established as a canonical pathway induced by TGF-β1 (5, 6). Receptor-regulated Smads (Smad2 and Smad3) are recruited and activated by the activated TβRI. The phosphorylation in the GS domain (7) and L45 loop (8) of TβRI are crucial for its interaction with receptor-regulated Smads. After phosphorylation, receptor-regulated Smads are rapidly dissociated from TβRI and interact with common Smad (Smad4) followed by nuclear translocation. In addition to the Smad pathway, a recently emerging body of evidence has demonstrated that TGF-β1 also induces various Smad-independent signaling pathways (917) by which mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinase (JNK) (18, 19), p38 MAPK (2022), and extracellular signal-regulated kinase 1/2 (23, 24) can be activated by TGF-β1.TAK1, initially identified as a MAPK kinase kinase 7 (MKKK7 or MAP3K7) in the TGF-β signaling pathway (11, 12), also can be activated by environmental stress (25), proinflammatory cytokines such as IL-1 and TNF-α (26, 27) and lipopolysaccharide (28). For TAK1 activation, phosphorylation at Thr-187 and Ser-192 in the activation loop of TAK1 is essentially required (2931). TAK1 can transduce signals to several downstream signaling cascades, including the MAPK kinase (MKK) 4/7-JNK cascade, MKK3/6-p38 MAPK cascade, and nuclear factor κB (NF-κB)-inducing kinase-IκB kinase cascade (2628). A recent report has shown that TAK1 is also activated by agonists of AMP-activated kinase (AMPK) and ischemia, which in turn activates the LKB1/AMPK pathway, a pivotal energy-sensor pathway (32). TAK1 is also involved in Wnt signaling (33). We and others have previously demonstrated that TAK1 is a major mediator of TGF-β1-induced type I collagen and fibronectin expression through activation of the MKK3-p38 MAPK and MKK4-JNK signaling cascades, respectively (3437). Furthermore, increased expression and activation of TAK1 enhance p38 phosphorylation and promote interstitial fibrosis in the myocardium from 9-day-old TAK1 transgenic mice (37). These data implicate a crucial role of TAK1 in extracellular matrix production and tissue fibrosis. TAK1 is also implicated in regulation of cell cycle (38), cell apoptosis (3941), and the Smad signaling pathway (4244). Thus, TAK1 may function as an important regulator and mediator of TGF-β1-induced Smad-dependent and Smad-independent signaling pathways.It has been demonstrated that TAK1 can be activated by the interaction with TAK1-binding protein 1 (TAB1) by in vitro binding assays and in overexpression studies (2931); however, it is not clear whether TAB1 plays a crucial role in ligand-induced TAK1 activation. In embryonic fibroblasts from TAB1 null mice, IL-1 and TNF-α could induce TAK1-mediated NF-κB and JNK activation (45). TAK1 activation induced by TNF-α, IL-1, and T-cell receptor requires TAB2 or its homologous protein TAB3 (4650). Although many questions still remain, much progress has been made in understanding the activation mechanism of TAK1 by inflammatory cytokines (46, 47, 5153). Ligand binding of IL-1 receptor (IL-1R) results in recruitment of MyD88, which serves as an adaptor for IL-1 receptor-associated kinase (IRAK) 1 and 4. Subsequently IRAK1 is hyperphosphorylated and induces interaction with TNF-α receptor-associated factor 6 (TRAF6), resulting in TRAF6 oligomerization. After oligomerization of TRAF6, IRAK1-TRAF6 complex is dissociated from the receptor and associated with TAK1, which is mediated by TAB2 (or TAB3). In this process polyubiquitination of TRAF6 by Ubc13/Uev1A is thought to be critical for the association with TAB2 (or TAB3), which links TAK1 activation (46, 54, 55). In the case of TNF-α stimulation, TNF-α receptors form trimers and recruit adaptor proteins, TRAF2/5, and receptor-interacting protein 1 on the membrane. Ubc13/Uev1A- and TRAF2-dependent polyubiquitination of receptor-interacting protein 1 induce association of TAB2 (or TAB3), which then activates TAK1. Thus, TAB2 is required for ubiquitin-dependent activation of TAK1 by TRAFs. On the other hand, it has been demonstrated that hematopoietic progenitor kinase 1 plays a role as an upstream mediator of TGF-β-induced TAK1 activation, which in turn activates the MKK4-JNK signaling cascade in 293T cells (56, 57). Besides hematopoietic progenitor kinase 1, it has been also suggested that X-linked inhibitor of apoptosis (XIAP) might link TAK1 to TGF-β/BMP receptors through the capability of XIAP to interact with TGF-β/BMP receptors and TAB1 (58). Thus, although various molecules participate in the activation of TAK1, the precise mechanism by which TGF-β1 induces TAK1 activation is incompletely understood. Here, we provide evidence that the association of TAK1 with TGF-β receptors is important for TGF-β1-induced activation of TAK1 in mouse mesangial cells. TGF-β1 stimulation induces interaction of TβRI and TβRII, triggering dissociation of TAK1 from TβRI, and subsequently TAK1 is phosphorylated through TAB1-mediated autophosphorylation, independent of receptor kinase activity of TβRI.  相似文献   

14.
15.
Neuroinflammation is involved in the death of retinal ganglion cells (RGCs) after optic nerve injury. The purpose of this study was to determine whether systemic simvastatin can suppress neuroinflammation in the optic nerve and rescue RGCs after the optic nerve is crushed. Simvastatin or its vehicle was given through an osmotic minipump beginning one week prior to the crushing. Immunohistochemistry and real-time PCR were used to determine the degree of neuroinflammation on day 3 after the crushing. The density of RGCs was determined in Tuj-1 stained retinal flat mounts on day 7. The effect of simvastain on the TNF-α-induced NF-κB activation was determined in cultured optic nerve astrocytes. On day 3, CD68-positive cells, most likely microglia/macrophages, were accumulated at the crushed site. Phosphorylated NF-κB was detected in some astrocytes at the border of the lesion where the immunoreactivity to MCP-1 was intensified. There was an increase in the mRNA levels of the CD68 (11.4-fold), MCP-1 (22.6-fold), ET-1 (2.3-fold), GFAP (1.6-fold), TNF-α (7.0-fold), and iNOS (14.8-fold) genes on day 3. Systemic simvastatin significantly reduced these changes. The mean ± SD number of RGCs was 1816.3±232.6/mm2 (n = 6) in the sham controls which was significantly reduced to 831.4±202.5/mm2 (n = 9) on day 7 after the optic nerve was crushed. This reduction was significantly suppressed to 1169.2±201.3/mm2 (P = 0.01, Scheffe; n = 9) after systemic simvastatin. Simvastatin (1.0 µM) significantly reduced the TNF-α-induced NF-κB activation in cultured optic nerve astrocytes. We conclude that systemic simvastatin can reduce the death of RGCs induced by crushing the optic nerve possibly by suppressing astroglial NF-κB activation.  相似文献   

16.
In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO) can alter the function of the basement membrane of retinal pigment epithelial (RPE) cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis.  相似文献   

17.
The dystrophin-associated protein complex (DAPC) is essential for skeletal muscle, and the lack of dystrophin in Duchenne muscular dystrophy results in a reduction of DAPC components such as syntrophins and in fiber necrosis. By anchoring various molecules, the syntrophins may confer a role in cell signaling to the DAPC. Calcium disorders and abnormally elevated cation influx in dystrophic muscle cells have suggested that the DAPC regulates some sarcolemmal cationic channels. We demonstrated previously that mini-dystrophin and α1-syntrophin restore normal cation entry in dystrophin-deficient myotubes and that sarcolemmal TRPC1 channels associate with dystrophin and the bound PDZ domain of α1-syntrophin. This study shows that small interfering RNA (siRNA) silencing of α1-syntrophin dysregulated cation influx in myotubes. Moreover, deletion of the PDZ-containing domain prevented restoration of normal cation entry by α1-syntrophin transfection in dystrophin-deficient myotubes. TRPC1 and TRPC4 channels are expressed at the sarcolemma of muscle cells; forced expression or siRNA silencing showed that cation influx regulated by α1-syntrophin is supported by TRPC1 and TRPC4. A molecular association was found between TRPC1 and TRPC4 channels and the α1-syntrophin-dystrophin complex. TRPC1 and TRPC4 channels may form sarcolemmal channels anchored to the DAPC, and α1-syntrophin is necessary to maintain the normal regulation of TRPC-supported cation entry in skeletal muscle. Cation channels with DAPC form a signaling complex that modulates cation entry and may be crucial for normal calcium homeostasis in skeletal muscles.  相似文献   

18.
Unrelated cells such as dental follicle precursor cells (DFPCs) and retinal Müller cells (MCs) make spheres after cultivation in serum-replacement medium (SRM). Until today, the relation and molecular processes of sphere formation from different cell types remain undescribed. Thus in this study we compared proteomes of spheres derived from MCs and DFPCs. 73% of 676 identified proteins were similar expressed in both cell types and many of them are expressed in the brain (55%). Moreover proteins are overrepresented that are associated with pathways for neural diseases such as Huntington disease or Alzheimer disease. Interestingly up-regulated proteins in DFPCs are involved in the biosynthesis of glycosphingolipids. These lipids are components of gangliosides such as GD3, which is a novel neural stem cell marker. In conclusion spheres from different types of cells have highly similar proteomes. These proteomes probably show essential cellular processes in neurosphere-like cell clusters.  相似文献   

19.
In the present study, we studied the factors that contribute to the injury-resistant property of melanopsin-expressing retinal ganglion cells (mRGCs). Since phosphatidylinositol-3 kinase (PI3 K)/Akt signaling pathway is one of the well-known pathways for neuronal cell survival, we investigated the survival of mRGCs by applying the PI3 K/Akt specific inhibitors after injury. Two injury models, unilateral optic nerve transection and ocular hypertension, were adopted using Sprague-Dawley rats. Inhibitors of PI3 K/Akt were injected intravitreally following injuries to inhibit the PI3 K/Akt signaling pathway. Retinas were dissected after designated survival time, immunohistochemistry was carried out to visualize the mRGCs using melanopsin antibody and the number of mRGCs was counted. Co-expression of melanopsin and phospho-Akt (pAkt) was also examined. Compared to the survival of non-melanopsin-expressing RGCs, mRGCs showed a marked resistance to injury and co-expressed pAkt. Application of PI3 K/Akt inhibitors decreased the survival of mRGCs after injury. Our previous study has shown that mRGC are less susceptible to injury following the induction of ocular hypertension. In this study, we report that mRGCs were injury-resistant to a more severe type of injury, the optic nerve transection. More importantly, the PI3 K/Akt pathway was found to play a role in maintaining the survival of mRGCs after injury.  相似文献   

20.
T cells have been classified as belonging to the Th1 or Th2 subsets according to the production of defining cytokines such as IFN-γ and IL-4. The discovery of the Th17 lineage and regulatory T cells shifted the simple concept of the Th1/Th2 balance into a 4-way mechanistic pathway of local and systemic immunological activity. Clinically, the blockage of cytokine signals or non-specific suppression of cytokine predominance by immunosuppressants is the first-line treatment for inflammatory T cell-mediated disorders. Cyclosporine A (CsA) and Tacrolimus (Tac) are commonly used immunosuppressants for the treatment of autoimmune disease, psoriasis, and atopic disorders. Many studies have shown that these compounds suppress the activation of the calcium-dependent phosphatase calcineurin, thereby inhibiting T-cell activation. Although CsA and Tac are frequently utilized, their pharmacological mechanisms have not yet been fully elucidated.In the present study, we focused on the effects of CsA and Tac on cytokine secretion from purified human memory CD4+T cells and the differentiation of naïve T cells into cytokine-producing memory T cells. CsA or Tac significantly inhibited IFN-γ, IL-4, and IL-17 production from memory T cells. These compounds also inhibited T cell differentiation into the Th1, Th2, and Th17 subsets, even when used at a low concentration. This study provided critical information regarding the clinical efficacies of CsA and Tac as immunosuppressants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号