首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-specific 2'-O-ribose methylation of eukaryotic rRNAs is guided by small nucleolar RNAs (snoRNAs). The methylation guide snoRNAs carry long perfect complementaries to rRNAs. These antisense elements are located either in the 5' half or in the 3' end region of the snoRNA, and are followed by the conserved D' or D box motifs, respectively. An uninterrupted helix formed between the rRNA and the antisense element of the snoRNA, in conjunction with the adjacent D' or D box, constitute the recognition signal for the putative methyltransferase. Here, we have identified an additional essential box element common to methylation guide snoRNAs, termed the C' box. We show that the C' box functions in concert with the D' box and plays a crucial role in the methyltransfer reaction directed by the upstream antisense element and the D' box. We also show that an internal fragment of U24 methylation guide snoRNA, encompassing the upstream antisense element and the D' and C' box motifs, can support the site-specific methylation of rRNA. This strongly suggests that the C box of methylation guide snoRNAs plays an essential role in the methyltransfer reaction guided by the 3'-terminal antisense element and the D box of the snoRNA.  相似文献   

2.
Tran EJ  Zhang X  Maxwell ES 《The EMBO journal》2003,22(15):3930-3940
Box C/D ribonucleoprotein (RNP) complexes direct the nucleotide-specific 2'-O-methylation of ribonucleotide sugars in target RNAs. In vitro assembly of an archaeal box C/D sRNP using recombinant core proteins L7, Nop56/58 and fibrillarin has yielded an RNA:protein enzyme that guides methylation from both the terminal box C/D core and internal C'/D' RNP complexes. Reconstitution of sRNP complexes containing only box C/D or C'/D' motifs has demonstrated that the terminal box C/D RNP is the minimal methylation-competent particle. However, efficient ribonucleotide 2'-O-methylation requires that both the box C/D and C'/D' RNPs function within the full-length sRNA molecule. In contrast to the eukaryotic snoRNP complex, where the core proteins are distributed asymmetrically on the box C/D and C'/D' motifs, all three archaeal core proteins bind both motifs symmetrically. This difference in core protein distribution is a result of altered RNA-binding capabilities of the archaeal and eukaryotic core protein homologs. Thus, evolution of the box C/D nucleotide modification complex has resulted in structurally distinct archaeal and eukaryotic RNP particles.  相似文献   

3.
Methylation of the ribose 2'-hydroxyl, the most widespread modification of ribosomal and splicesomal RNAs, is guided by the box C/D class of small nucleolar RNAs (snoRNAs). Box C/D small nucleolar ribonucleoproteins (snoRNPs) contain four core proteins: fibrillarin, Nop56, Nop58 and 15.5 kDa. We constructed U25 snoRNAs containing a single photoactivatable 4-thiouridine at each U position within the conserved box C/D and C'/D' motifs. Proteins assembled on the snoRNA after injection into Xenopus oocyte nuclei were identified by cross-linking, and reconstituted particles characterized by functional rescue and mutational analyses. Our data argue that box C/D snoRNPs are asymmetric, with the C' box contacting Nop56 and fibrillarin, the C box interacting with Nop58, and the D and D' boxes contacting fibrillarin. No cross-link to 15.5 kDa was detected; its binding is disrupted by 4-thiouridine substitution in position 1 of the C box. Repositioning the guide sequence of U25 upstream of box D instead of D' revealed that both C/D motifs have the potential to function as guide centers, but, surprisingly, there was no alteration in protein cross-linking.  相似文献   

4.
We report the identification of 17 box C/D fibrillarin-associated small nucleolar RNAs (snoRNAs) from the ancient eukaryote, Trypanosoma brucei. To systematically isolate and characterize these snoRNAs, the T. brucei cDNA for the box C/D snoRNA common protein, fibrillarin, was cloned and polyclonal antibodies to the recombinant fibrillarin protein were generated in rabbits. Immunoprecipitations from T. brucei extracts with the anti-fibrillarin antibodies indicated that this trypanosomatid has at least 30 fibrillarin-associated snoRNAs. We have sequenced seventeen of them and designated them TBR for T. brucei RNA 1-17. All of them bear conserved box C, D, C', and D' elements, a hallmark of fibrillarin-associated snoRNAs in eukaryotes. Fourteen of them are novel T. brucei snoRNAs. Fifteen bear potential guide regions to mature rRNAs suggesting that they are involved in 2'-O-ribose methylation. Indeed, eight ribose methylations have been mapped in the rRNA at sites predicted by the snoRNA sequences. Comparative genomics indicates that six of the seventeen are the first trypanosome homologs of known yeast and vertebrate methylation guide snoRNAs. Our results indicate that T. brucei has many fibrillarin-associated box C/D snoRNAs with roles in 2'-O-ribose methylation of rRNA and that the mechanism for targeting the nucleotide to be methylated at the fifth nucleotide upstream of box D or D' originated in early eukaryotes.  相似文献   

5.
6.
Archaeal and eukaryotic box C/D RNPs catalyze the 2'-O-methylation of ribosomal RNA, a modification that is essential for the correct folding and function of the ribosome. Each archaeal RNP contains three core proteins--L7Ae, Nop5, and fibrillarin (methyltransferase)--and a box C/D sRNA. Base-pairing between the sRNA guide region and the rRNA directs target site selection with the C/D and related C'/D' motifs functioning as protein binding sites. Recent structural analysis of in vitro assembled archaeal complexes has produced two divergent models of box C/D sRNP structure. In one model, the complex is proposed to be monomeric, while the other suggests a dimeric sRNP. The position of the RNA in the RNP is significantly different in each model. We have used UV-cross-linking to characterize protein-RNA contacts in the in vitro assembled Pyrococcus furiosus box C/D sRNP. The P. furiosus sRNP components assemble into complexes that are the expected size of di-sRNPs. Analysis of UV-induced protein-RNA cross-links revealed a novel interaction between the ALFR motif, in the Nop domain of Nop5, and the guide/spacer regions of the sRNA. We show that the ALFR motif and the spacer sequence adjacent to box C or C' are important for box C/D sRNP assembly in vitro. These data therefore reveal new RNA-protein contacts in the box C/D sRNP and suggest a role for Nop5 in substrate binding and/or release.  相似文献   

7.
The genome of the hyperthermophilic archaeon Sulfolobus solfataricus contains dozens of small C/D-box sRNAs that use a complementary guide sequence to target 2'-O-ribose methylation to specific locations within ribosomal and transfer RNAs. The sRNAs are approximately 50-60 nucleotides in length and contain two RNA structural kink-turn (K-turn) motifs that are required for assembly with ribosomal protein L7Ae, Nop5, and fibrillarin to form an active ribonucleoprotein (RNP) particle. The complex catalyzes guide-directed methylation to target RNAs. Earlier work in our laboratory has characterized the assembly pathway and methylation reaction using the model sR1 sRNA from Sulfolobus acidocaldarius. This sRNA contains only one antisense region situated adjacent to the D-box, and methylation is directed to position U52 in 16S rRNA. Here we have investigated through RNA mutagenesis, the relationship between the sR1 structure and methylation-guide function. We show that although full activity of the guide requires intact C/D and C'/D' K-turn motifs, each structure plays a distinct role in the methylation reaction. The C/D motif is directly implicated in the methylation function, whereas the C'/D' element appears to play an indirect structural role by facilitating the correct folding of the RNA. Our results suggest that L7Ae facilitates the folding of the K-turn motifs (chaperone function) and, in addition, is required for methylation activity in the presence of Nop5 and Fib.  相似文献   

8.
Box C/D ribonucleoprotein particles guide the 2'-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C'/D' motifs in the box C/D RNA. The C/D and C'/D' RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2'-O-methylation when the C'/D' motif was either mutated or ablated. In contrast, the C'/D' RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C'/D' RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C'/D' motifs. Therefore, the spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes.  相似文献   

9.
10.
Archaeal box C/D sRNAs guide the methylation of specific nucleotides in archaeal ribosomal and tRNAs. Three Methanocaldococcus jannaschii sRNP core proteins (ribosomal protein L7, Nop56/58, and fibrillarin) bind the box C/D sRNAs to assemble the sRNP complex, and these core proteins are essential for nucleotide methylation. A distinguishing feature of the Nop56/58 core protein is the coiled-coil domain, established by alpha-helices 4 and 5, that facilitates Nop56/58 self-dimerization in vitro. The function of this coiled-coil domain has been assessed for box C/D sRNP assembly, sRNP structure, and sRNP-guided nucleotide methylation by mutating or deleting this protein domain. Protein pull-down experiments demonstrated that Nop56/58 self-dimerization and Nop56/58 dimerization with the core protein fibrillarin are mutually exclusive protein:protein interactions. Disruption of Nop56/58 homodimerization by alteration of specific amino acids or deletion of the entire coiled-coil domain had no obvious effect upon core protein binding and sRNP assembly. Site-directed mutation of the Nop56/58 homodimerization domain also had no apparent effect upon either box C/D RNP- or C'/D' RNP-guided nucleotide modification. However, deletion of this domain disrupted guided methylation from both RNP complexes. Nuclease probing of the sRNP assembled with Nop56/58 proteins mutated in the coiled-coil domain indicated that while functional complexes were assembled, box C/D and C'/D' RNPs were altered in structure. Collectively, these experiments revealed that the self-dimerization of the Nop56/58 coiled-coil domain is not required for assembly of a functional sRNP, but the coiled-coil domain is important for the establishment of wild-type box C/D and C'/D' RNP structure essential for nucleotide methylation.  相似文献   

11.
Forzani C  Lobréaux S  Mari S  Briat JF  Lebrun M 《Gene》2002,292(1-2):199-204
A novel 72 nt small nucleolar RNA (snoRNA) called U87 was found in rat liver cells. This RNA possesses the features of C/D box snoRNA family: boxes C, D', C', D, and 11 nt antisense element complementary to 28S ribosomal RNA (rRNA). The vast majority of C/D box snoRNAs direct site-specific 2'-O-ribose methylation of rRNAs. U87 RNA is suggested to be involved in 2'-O-methylation of a G(3468) residue in 28S rRNA. U87 RNA was detected in different mammalian species with slight length variability. Rat and mouse U87 RNA gene was characterized. Unlike the majority of C/D box snoRNAs U87 RNA lacks the terminal stem required for snoRNA processing. However, U87 gene is flanked by 7 bp inverted repeats potentially able to form a terminal stem in U87 RNA precursor.  相似文献   

12.
Assembly and guide-target interaction of an archaeal box C/D-guide sRNP was investigated under various conditions by analyzing the lead (II)-induced cleavage of the guide RNA. Guide and target RNAs derived from Haloferax volcanii pre-tRNA(Trp) were used with recombinant Methanocaldococcus jannaschii core proteins in the reactions. Core protein L7Ae binds differentially to C/D and C'/D' motifs of the guide RNA, and interchanging the two motifs relative to the termini of the guide RNA did not affect L7Ae binding or sRNA function. L7Ae binding to the guide RNA exposes its D'-guide sequence first followed by the D guide. These exposures are reduced when aNop5p and aFib proteins are added. The exposed guide sequences did not pair with the target sequences in the presence of L7Ae alone. The D-guide sequence could pair with the target in the presence of L7Ae and aNop5p, suggesting a role of aNop5p in target recruitment and rearrangement of sRNA structure. aFib binding further stabilizes this pairing. After box C/D-guided modification, target-guide pairing at the D-guide sequence is disrupted, suggesting that each round of methylation may require some conformational change or reassembly of the RNP. Asymmetric RNPs containing only one L7Ae at either of the two box motifs can be assembled, but a functional RNP requires L7Ae at the box C/D motif. This arrangement resembles the asymmetric eukaryal snoRNP. Observations of initial D-guide-target pairing and the functional requirement for L7Ae at the box C/D motif are consistent with our previous report of the sequential 2'-O-methylations of the target RNA.  相似文献   

13.
Among the large family of C/D methylation guide RNAs, the intron of euryarchaeal pre-tRNA(Trp) represents an outstanding specimen able to guide in cis, instead of in trans, two 2'-O-methylations in the pre-tRNA exons. Remarkably, both sites of methylation involve nucleotides within the bulge-helix-bulge (BHB) splicing motif, while the RNA-guided methylation and pre-tRNA splicing events depend on mutually exclusive RNA folding patterns. Using the three recombinant core proteins of archaeal C/D RNPs, we have analyzed in vitro RNP assembly of the pre-tRNA and tested its site-specific methylation activity. Recognition by L7Ae of hallmark K-turns at the C/D and C'/D' motifs appears as a crucial assembly step required for subsequent binding of a Nop5p-aFib heterodimer at each site. Unexpectedly, however, even without L7Ae but at a higher concentration of Nop5p-aFib, a substantially active RNP complex can still form, possibly reflecting the higher propensity of the cis-acting system to form guide RNA duplex(es) relative to classical trans- acting C/D RNA guides. Moreover, footprinting data of RNPs, consistent with Nop5p interacting with the non-canonical stem of the K-turn, suggest that binding of Nop5p-aFib to the pre-tRNA-L7Ae complex might direct transition from a splicing-competent structure to an RNA conformer displaying the guide RNA duplexes required for site-specific methylation.  相似文献   

14.
Archaeal dual-guide box C/D small nucleolar RNA-like RNAs (sRNAs) bind three core proteins in sequential order at both terminal box C/D and internal C'/D' motifs to assemble two ribonuclear protein (RNP) complexes active in guiding nucleotide methylation. Experiments have investigated the process of box C/D sRNP assembly and the resultant changes in sRNA structure or "remodeling" as a consequence of sRNP core protein binding. Hierarchical assembly of the Methanocaldococcus jannaschii sR8 box C/D sRNP is a temperature-dependent process with binding of L7 and Nop56/58 core proteins to the sRNA requiring elevated temperature to facilitate necessary RNA structural dynamics. Circular dichroism (CD) spectroscopy and RNA thermal denaturation revealed an increased order and stability of sRNA folded structure as a result of L7 binding. Subsequent binding of the Nop56/58 and fibrillarin core proteins to the L7-sRNA complex further remodeled sRNA structure. Assessment of sR8 guide region accessibility using complementary RNA oligonucleotide probes revealed significant changes in guide region structure during sRNP assembly. A second dual-guide box C/D sRNA from M. jannaschii, sR6, also exhibited RNA remodeling during temperature-dependent sRNP assembly, although core protein binding was affected by sR6's distinct folded structure. Interestingly, the sR6 sRNP followed an alternative assembly pathway, with both guide regions being continuously exposed during sRNP assembly. Further experiments using sR8 mutants possessing alternative guide regions demonstrated that sRNA folded structure induced by specific guide sequences impacted the sRNP assembly pathway. Nevertheless, assembled sRNPs were active for sRNA-guided methylation independent of the pathway followed. Thus, RNA remodeling appears to be a common and requisite feature of archaeal dual-guide box C/D sRNP assembly and formation of the mature sRNP can follow different assembly pathways in generating catalytically active complexes.  相似文献   

15.
The processing and methylation of precursor rRNA is mediated by the box C/D small nucleolar RNAs (snoRNAs). These snoRNAs differ from most cellular RNAs in that they are not exported to the cytoplasm. Instead, these RNAs are actively retained in the nucleus where they assemble with proteins into mature small nucleolar ribonucleoprotein particles and are targeted to their intranuclear site of action, the nucleolus. In this study, we have identified the cis-acting sequences responsible for the nuclear retention of U3 box C/D snoRNA by analyzing the nucleocytoplasmic distributions of an extensive panel of U3 RNA variants after injection of the RNAs into Xenopus oocyte nuclei. Our data indicate the importance of two conserved sequence motifs in retaining U3 RNA in the nucleus. The first motif is comprised of the conserved box C' and box D sequences that characterize the box C/D family. The second motif contains conserved box sequences B and C. Either motif is sufficient for nuclear retention, but disruption of both motifs leads to mislocalization of the RNAs to the cytoplasm. Variant RNAs that are not retained also lack 5' cap hypermethylation and fail to associate with fibrillarin. Furthermore, our results indicate that nuclear retention of U3 RNA does not simply reflect its nucleolar localization. A fragment of U3 containing the box B/C motif is not localized to nucleoli but retained in coiled bodies. Thus, nuclear retention and nucleolar localization are distinct processes with differing sequence requirements.  相似文献   

16.
Archaeal box C/D sRNAs guide the 2'-O-methylation of target nucleotides using both terminal box C/D and internal C'/D' RNP complexes. In vitro assembly of a catalytically active Methanocaldococcus jannaschii sR8 box C/D RNP provides a model complex to determine those structural features of the guide:target RNA duplex important for sRNA-guided nucleotide methylation. Watson-Crick pairing of guide and target nucleotides was found to be essential for methylation, and mismatched bases within the guide:target RNA duplex also disrupted nucleotide modification. However, dependence upon Watson-Crick base-paired guide:target nucleotides for methylation was compromised in elevated Mg(2+) concentrations where mismatched target nucleotides were modified. Nucleotide methylation required that the guide:target duplex consist of an RNA:RNA duplex as a target ribonucleotide within a guide RNA:target DNA duplex that was not methylated. Interestingly, D and D' target RNAs exhibited different levels of methylation when deoxynucleotides were inserted into the target RNA or when target methylation was carried out in elevated Mg(2+) concentrations. These observations suggested that unique structural features of the box C/D and C'/D' RNPs differentially affect their respective methylation capabilities. The ability of the sR8 box C/D sRNP to methylate target nucleotides positioned within highly structured RNA hairpins suggested that the sRNP can facilitate unwinding of double-stranded target RNAs. Finally, increasing target RNA length to extend beyond those nucleotides that base pair with the sRNA guide sequence significantly increased sRNP turnover and thus nucleotide methylation. This suggests that target RNA interaction with the sRNP core proteins is also important for box C/D sRNP-guided nucleotide methylation.  相似文献   

17.
Hirose T  Shu MD  Steitz JA 《Molecular cell》2003,12(1):113-123
In mammalian cells, all small nucleolar RNAs (snoRNAs) that guide rRNA modification are encoded within the introns of host genes. An optimal position about 70 nts upstream of the 3' splice site of the host intron is critical for efficient expression of box C/D snoRNAs in vivo, suggesting synergy with splicing. Here, we have used a coupled in vitro splicing-snoRNA processing system to demonstrate that assembly of box C/D snoRNP proteins is the step affected by snoRNA location, and that active splicing is essential for snoRNP assembly. Splicing blockage experiments further reveal that snoRNP proteins bind specifically at the spliceosomal C1 complex stage. In contrast, splicing-independent snoRNP assembly can occur in vitro on snoRNAs that possess stable external stems. In vivo analyses confirm that a stable stem can compensate for the unusual position of those few box C/D snoRNAs located far from the 3' splice site of their host intron.  相似文献   

18.
In the domains Eucarya and Archaea, box C/D RNAs guide methylation at the 2'-position of selected ribose residues in ribosomal RNA (rRNA). Those eukaryotic box C/D RNAs that have been identified to date are larger and more variable in size than their archaeal counterparts. Here, we report the first extensive identification and characterization of box C/D small nucleolar (sno) RNAs from the protist Euglena gracilis. Among several unexpected findings, this organism contains a large assortment of methylation-guide RNAs that are smaller and more uniformly sized than those of other eukaryotes, and that consist of surprisingly few double-guide RNAs targeting sites of rRNA modification. Our comprehensive examination of the modification status of E.gracilis rRNA indicates that many of these box C/D snoRNAs target clustered methylation sites requiring extensive, overlapping guide RNA/rRNA pairings. An examination of the structure of the RNAs, in particular the location of the functional guide elements, suggests that the distances between adjacent box elements are an important factor in determining which of the potential guide elements is used to target a site of O(2')-methylation.  相似文献   

19.
Small nucleolar RNAs (snoRNAs) are associated in ribonucleoprotein particles localized to the nucleolus (snoRNPs). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Although the selection of the target nucleotide requires the antisense element and the conserved box D or D' of the snoRNA, the methyltransferase activity is supposed to reside in one of the protein components. Through protein tagging of a snoRNP-specific factor, we purified to homogeneity box C/D snoRNPs from the yeast Saccharomyces cerevisiae. Mass spectrometric analysis demonstrated the presence of Nop1p, Nop58p, Nop56p, and Snu13p as integral components of the particle. We show that purified snoRNPs are able to reproduce the site-specific methylation pattern on target RNA and that the predicted S-adenosyl-L-methionine-binding region of Nop1p is responsible for the catalytic activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号