首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J A D'Anna  R A Tobey 《Biochemistry》1989,28(7):2895-2902
Previous investigations showed that inhibition of DNA synthesis by hydroxyurea, aphidicolin, or 5-fluorodeoxyuridine produced large changes in the composition and nucleosome repeat lengths of bulk chromatin. Here we report results of investigations to determine whether the changes in nucleosome repeat lengths might be localized in the initiated replicons, as postulated [D'Anna, J. A., & Prentice, D. A. (1983) Biochemistry 22, 5631-5640]. In most experiments, Chinese hamster (line CHO) cells were synchronized in G1, or they were synchronized in early S phase by allowing G1 cells to enter S phase in medium containing 1 mM hydroxyurea or 5 micrograms mL-1 aphidicolin, a procedure believed to produce an accumulation of initiated replicons that arise from normally early replicating DNA. Measurements of nucleosome repeat lengths of bulk chromatin, the early replicating unexpressed metallothionein II (MTII) gene region, and a later replicating repeated sequence indicate that the changes in repeat lengths occur preferentially in the early replicating MTII gene region as G1 cells enter and become synchronized in early S phase. During that time, the MTII gene region is not replicated nor is there any evidence for induction of MTII messenger RNA. Thus, the results are consistent with the hypothesis that changes in chromatin structure occur preferentially in the early replicating (presumably initiated) replicons at initiation or that changes in chromatin structure can precede replication during inhibition of DNA synthesis. The shortened repeat lengths that precede MTII replication are, potentially, reversible, because they become elongated when the synchronized early S-phase cells are released to resume cell cycle progression.  相似文献   

2.
Cells were synchronized in G1 by isoleucine deprivation and then released into medium containing 1 mM hydroxyurea (HU), 5 micrograms mL-1 aphidicolin (APC), or 1 microgram mL-1 5-fluorodeoxyuridine (fl5dU). Coulter volume, content of histone H1 per unit DNA, turnover of histone H1, the extent of DNA elongation, and the survival of cells were measured as functions of time after release into the presence of the drugs. At the concentrations used in the experiments, the drug differ in their toxicity (fl5dU greater than HU greater than APC), induction of unbalanced cell growth, and the distribution of new DNA fragment sizes allowed during block, but they all (1) allow cells to enter S phase, (2) cause similar time-dependent losses of histone H1 per unit DNA, which begin as synchronized G1 cells begin to enter S phase, (3) retard DNA elongation beyond replicon size, and (4) retard the turnover of histone H1. The results indicate that loss of histone H1, inhibition of histone turnover, the retarded ligation of newly replicated DNA into bulk chromatin, and chromatin structural changes may be part of the cell's general response to inhibition of DNA replication. Since transient S phase block increases the frequencies of gene amplification [Mariani, B. D., & Schimke, R. T. (1984) J. Biol. Chem. 259, 1901-1910] and sister chromatid exchanges (SCE) [Rainaldi, G., Sessa, M. R., & Mariani, T. (1984) Chromosoma 90, 46-49], the observed changes in H1 content and chromatin organization may also be essential features of gene amplification and SCE.  相似文献   

3.
Several methods to synchronize cultured cells in the cell cycle are based on temporary inhibition of DNA replication. Previously it has been reported that cells synchronized this way exhibited significant growth imbalance and unscheduled expression of cyclins A and B1. We have now observed that HL-60 cells exposed to inhibitors of DNA replication (thymidine, aphidicolin and hydroxyurea), at concentrations commonly used to synchronize cell populations, had histone H2AX phosphorylated on Ser-139. This modification of H2AX, a marker of DNA damage (induction of DNA double-strand breaks; DSBs), was most pronounced in S-phase cells, and led to their apoptosis. Thus, to a large extent, synchronization was caused by selective kill of DNA replicating cells through induction of replication stress. In fact, similar synchronization has been achieved by exposure of cells to the DNA topoisomerase I inhibitor camptothecin, a cytotoxic drug known to target S-phase cells. A large proportion of the surviving cells 'synchronized' by DNA replication inhibitors at the G1/S boundary had phosphorylated histone H2AX. Inhibitors of DNA replication, thus, not only selectively kill DNA replicating cells, induce growth imbalance and alter the machinery regulating progression through the cycle, but they also cause DNA damage involving formation of DSBs in the surviving ('synchronized') cells. The above effects should be taken into account when interpreting data obtained with the use of cells synchronized by inhibitors of DNA replication.  相似文献   

4.
The synchronized divisions following a treatment with hydroxyurea (HU) — an inhibitor of DNA synthesis — were studied in root meristems of Allium sativum using two methods: autoradiography of median sections and morphological labeling with a cytokinesis inhibitor. It is shown that the second wave of mitoses is heterogeneous: it is composed mostly of cells which have been synchronized in the S phase by the HU treatment, of cells coming from the quiescent center stimulated to enter DNA synthesis and of cells which were not blocked by the 23 h HU treatment (slow cycling cells). It is also shown that the cell cycle following the first synchronized division is considerably shortened by the synchronization procedure.Abbreviations QC quiescent center - HU hydroxyurea - MHQD methyl-3 hydroxy-6 quinazoline dione 2–4  相似文献   

5.
The toxic and inhibitory properties of hydroxyurea (HU) have been studied in asynchronous and synchronized populations of mouse L-cells. Hydroxyurea is a potent growth inhibitor and appears to be specifically lethal for cells which are in the early part of S phase at the time the compound is introduced. Cells in late S phase, G2, mitosis and G1 appear to progress normally around the cycle in the presence of the compound until they reach the G1/S boundary. There are indications that at least some G1 cells are able to enter the S phase even in the presence of the drug; however their flow into S is much slower than that of control cells and therefore they are killed at a slow rate. Upon prolonged exposure to the drug a second phase of more rapid killing is observed, beginning at about the time division would occur in uninhibited cells. Hydroxyurea exhibits a rapid and marked inhibition on DNA synthesis but its effect on RNA synthesis is much less pronounced and may be a consequence of the inhibition of DNA synthesis. The effects of hydroxyurea on cell viability and DNA synthesis can be partially prevented by the addition of deoxyribonucleosides which in sufficient concentration appear to compete temporarily with the drug. The fact that the protection is only temporary would appear to rule out the hypothesis that the primary mode of action of the drug is the inhibition of the reduction which converts ribonucleotides to deoxyribonucleotides. The data presented in this communication taken together with observations of other workers would appear to suggest that the effect of the drug may be directly on the DNA molecule.  相似文献   

6.
The biosynthesis and phosphorylation of histone fractions were measured in synchronized CHO Chinese hamster cells arrested in late G1 by hydroxyurea treatment. Hydroxyurea was found to inhibit the initiation of both DNA and histone synthesis, thus confirming the conclusion that it arrests cells in G1 slightly before the G1S boundary. However, hydroxyurea did not inhibit the phosphorylation of histone f1 or histone f2a2. The phosphorylation of histone f1, which normally is absent in early G1, begins 2 hr prior to DNA synthesis. In the presence of hydroxyurea, f1 phosphorylation occurs on schedule at this same time in G1, resulting in significant G1-phase f1 phosphorylation. This offers strong evidence that (a) f1 phosphorylation is not restricted to S phase; (b) “old” f1 which was synthesized in previous cell cycles is phosphorylated in G1 before “new” f1 which is synthesized in S phase; and (c) G1-phase f1 phosphorylation does not require new histone or new DNA synthesis.Histone f1 phosphorylation was observed to occur at accelerated rates in S phase over phosphorylation rates observed in late G1-arrest. Data support the proposal that three different levels of f1 phosphorylation occur during the cell cycle: (1) a G1-related phosphorylation of “old” f1; (2) an S-related phosphorylation of both “old” and “new” f1; and (3) a superphosphorylation of f1 associated with chromosome condensation during the G2 to M transition. It is also possible that a limited proportion of f1 may be phosphorylated in G1, perhaps at the initial DNA synthesis sites, and that an increased proportion of f1 is phosphorylated in S as DNA is synthesized. Similarities between the kinetics of histone f1 phosphorylation and the association of DNA with lipoprotein in synchronized control and hydroxyurea-treated cells suggest an involvement of f1 phosphorylation in cell-cycle-dependent chromatin structural changes.  相似文献   

7.
Summary— The involvement of genome portions replicating at different times of the S phase in the control of cell cycle events was analysed in Allium cepa L meristematic cells. 5-Azacytidine (5-azaC) was incorporated into discrete replicating DNA portions in synchronous cells. Cells treated with 5-azaC during the late S phase went through normal cell cycles while cells treated with 5-azaC during the early S phase were able to go through the immediately succeeding mitosis, as well as to begin the subsequent S phase. However, they were unable to enter a second mitosis. Thus, sequences replicating in the early S phase appear to code for a mitotic inhibitor which represses the emergence of a positive mitotic signal. This inhibition took place in the first half of the interphase (ie during G1) and resulted in a cell cycle blockage in G2.  相似文献   

8.
The synthesis of polyoma DNA was studied in isolated nuclei from hydroxyurea-inhibited 3T6 cells infected with polyoma virus. During incubation of nuclei under conditions suitable for polyoma DNA synthesis in vitro, the short DNA fragments with a sedimentation coefficient of 4S formed in vivo (hydroxyurea fragments) became associated with preformed, replicating DNA strands. Centrifugation in dye-buoyant density gradients showed that the fragments formed part of the structure of the replicative intermediate of polyoma DNA. The proportion of "young" replicative intermediates was larger after hydroxyurea inhibition than in uninhibited controls. Hydroxyurea fragments appear to be closely related to the 4S fragments formed as normal intermediates during discontinuous synthesis of polyoma DNA.  相似文献   

9.
We have purified HeLa histone mRNA from polysomes of S-phase cells which had been synchronized by hydroxyurea treatment. This mRNA was shown to direct the in vitro synthesis of all five histones which amount to at least 90-95% of its total translational activity. Polysomal histone mRNP was also purified and identified by cell-free translation and hybridization to a clone of histone DNA from E. esculentus. The protein moiety of this mRNP contained three prominent species of molecular weight 86,000, 73,000 and 53,000 daltons. The presence of the 73,000 species previously assessed to be bound to poly(A) is discussed in view of the fact that histone mRNA does not contain a pail. As globin mRNA, histone mRNA as well as histone mRNP were translated with equal efficiency in cell-free extracts from either S-phase or hydroxyurea blocked HeLa cells.  相似文献   

10.
11.
Hydroxyurea treatment affects the G1 phase in next generation CHO cells   总被引:1,自引:0,他引:1  
DNA replication kinetics were studied in populations of synchronized CHO cells treated in the previous generation with hydroxyurea. These CHO cells were re-synchronized by selective detachment of mitotic cells after previously synchronized G1 traversing cultures were treated with 0.1 mM and 2 mM hydroxyurea for 9 and 13 h. Our results show that these cells exhibit a shortening of G1 of at least 1 h relative to cells selected in mitosis from untreated exponentially growing cultures. Survival studies indicated that the hydroxyurea treatments did not affect plating efficiencies. Cell viability was reduced when the initially synchronized populations were blocked with 2 mM, but not 0.1 mM hydroxyurea for greater than 13 h. DNA replication measurements after these blocks showed that all cultures treated with 2 mM hydroxyurea for either 9, 13 or 15 h were blocked at the same point near the G1/S boundary, and then progressed through S phase with similar kinetics. The observed shortening of G1 in the next generation of these cells was independent of both the concentration (0.1 or 2.0 mM) and the time (9 or 13 h) of the hydroxyurea block. These results suggest that specific events relating to the next cell generation can be uncoupled from DNA synthesis and can occur when hydroxyurea inhibits normal cell cycle traverse of G1 cells into and through S phase.  相似文献   

12.
13.
DNA isolated from mammalian cell nuclear reveals discrete size patterns when partially digested with micrococcal nuclease. The DNA repeat lengths from different tissues within a species or from different species may vary. These differences have been attributed to the presence of different species of histone H1. To examine the nature of regulation of DNA repeat lengths and their possible relationship to histone H1, we have selected several mouse and human cell lines that differ in their DNA repeat lengths and examined them and their cell hybrids. 24 mouse X human and five mouse X mouse hybrid cell lines were analyzed. All the interspecific hybrids exhibited the repeat pattern characteristic of the murine parent. The mouse intraspecific hybrids had a repeat pattern of only one of the parents. We conclude that the partial human chromosome complements retained in the hybrids assume the repeat lengths exhibited by the mouse cells. Because H1 histones have been implicated in the determination of DNA repeat lengths, we also investigated the regulation of H1 histone expression in these cell hybrids. Purified H1 histones were radioactively labeled in vitro, and individual subfractions were subjected to proteolysis followed by gel electrophoresis. The resulting partial peptide maps off H1 histone subfractions A and B were distinguishable from one another and from different cell lines. In the mouse X human hybrids analyzed, only the mouse H1 histones were detected. These observations were extended to H2b by analysis of the hybrid cell histone by Triton-acid-urea gels. Neither the DNA repeat length nor histone expression is affected by the presence of any specific human chromosome. The fact that human genes are expressed in these hybrids suggests that the H1 histones of one species is able to interact with the chromatin of another species in a biologically funtional conformation. Analysis of the intraspecific PG19 X B82 (mouse X mouse) hybrids reveals the presence of H1 histone subfractions of the B82 mouse cells. Because these hybrids exhibit the nucleosome repeat length only of the PG19 cells, it appears that if histone H1 plays a role in determining the repeat length it does so in consort with other nonhistone chromosomal proteins.  相似文献   

14.
A temperature-sensitive cell cycle mutant of the BHK cell line   总被引:19,自引:0,他引:19  
A temperature-sensitive growth mutant derived from the BHK 21 cell Line, ts AF8, was found to have greatly reduced DNA synthesis at the nonpermissive temperature. This reduction is mainly due to a decrease in the frequency of cells synthesizing DNA. Upon shift up, ts AF8 becomes blocked in the G1 phase of the cell cycle. The cells acquire elevated cAMP levels and a unimodal distribution of DNA content, equivalent to that of G1 cells at the permissive temperature, Ts AF8 cells blocked at the G1/S boundary with hydroxyurea will enter S when shifted to the nonpermissive temperature. On the other hand, ts AF8 cells arrested m G1 by serum deprivation and shifted to the nonpermissive temperature at the moment of serum addition do not enter S, while those synchronized by isoleucine deprivation and shifted at the time of isoleucine addition will enter S. These data suggest that the cycle arrest point of the ts AF8 mutation is located in G1 between the blocks induced by serum starvation and isoleucine deprivation. The reduction in DNA synthesis caused by the ts AF8 mutation is not reversed by infection or transformation with Polyoma virus. Mitochondrial DNA continues to be synthesized at wild-type levels at the nonpermissive temperature.  相似文献   

15.
Fractionated replicating DNA from pea was obtained from both synchronized cells just starting replication and from carbohydrate-starved cells ending replication. Benzoylated naphthoylated DEAE-cellulose chromatography of pulse-labeled DNA digested with EcoR I gave evidence that a family of replicons initiated replication 45 to 60 min after synchronized cells were released from the G1/S phase boundary. DNA from cells labeled in late S phase, on the other hand, showed no signs of additional replication initiations before entering G2 phase. Results with DNA from both early and late S phase cells comply with a model based on the premise that with short pulses of [3H]-thymidine the isotope is localized at replication forks and that longer pulses label both replication forks and recently replicated segments of double-stranded DNA. The model applies only to DNA subjected to fragmentation before chromatography.The results also suggest that benzoylated naphthoylated DEAE-cellulose chromatography is a useful means to isolate origins and replication forks from synchronized plant cells.  相似文献   

16.
These experiments were directed towards establishing a procedure for isolation of the DNA sequences replicated at different times in S phase for further study. Primary considerations were thus for a method that gave fairly large quantities of cells as well synchronized in S phase as possible. The use of Chinese hamster ovary (CHO) cells synchronized by isoleucine starvation followed by exposure to hydroxyurea [1] seemed to be most promising and was explored in detail. During the course of this work, a labelling scheme was developed that involved exposure to BrdUrd during the same time window in two sequential S phases. Only those regions of the genome replicated in the same interval in each S period contained BrdUrd in both strands and these were readily isolated in CsCl gradients. As applied in the present experiments, this labelling procedure showed no untoward effects on cell-cycle traverse and gave DNA distributions in density gradients that closely approximated those that would be expected for the conditions employed.  相似文献   

17.
The cell cycle of HeLa S3 cells synchronized by hydroxyurea was investigated by flow cytometry. Metachromatic fluorochrome acridine orange was used to strain the DNA and RNA of the cells differentially. Periodic changes in the cellular DNA and RNA contents were observed through five cell cycles. The G1 and S phases of synchronized HeLa S3 cells that contained large amounts of RNA became shorter than those of cells that contained smaller amounts of RNA.  相似文献   

18.
19.
20.
To determine whether histone genes are coordinately regulated, histone mRNA concentrations were measured in exponentially growing L6 myoblasts, S-phase synchronized myoblasts and in differentiating myoblasts. The levels of various histone mRNA subspecies declined rapidly and coordinately once myoblasts were given the signal to differentiate. mRNA levels were reduced on average to 1-5% of the amount observed in exponentially growing cells by 48 h after the signal to differentiate. The reductions occurred in concert with the cessation of DNA synthesis as the cells differentiated. Inhibition of DNA synthesis by treating myoblasts with Ara-C or hydroxyurea resulted in a histone mRNA half-life of 10-13 min for each of the histones examined. One example of non-coordinate regulation was observed however among the H4 mRNA subspecies in S-phase synchronized cells. The levels of two major subspecies of H4 mRNA increased coordinately in S-phase compared to levels observed in cells growing exponentially. A third subspecies of H4 mRNA on the other hand was found to decline by 50%. These studies suggest that the majority of histone mRNA subspecies are under coordinate control, although one exception has been noted among the subspecies of histone H4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号