首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

In a previous study, we showed that ultrasound can dramatically reduce the time required for tissue fixation in formalin. It generally is believed that ultrasound increases the speed of tissue fixation in two possible ways: 1) increasing the speed of penetration of fixative molecules into tissue samples and 2) increasing the speed of cross-linking reactions. We addressed here the second possible way by using protein solutions and cultured cells, which minimized the effects of the penetration factor. Proteins or cultured cells in solution were fixed with formalin with or without ultrasound irradiation. Fixed proteins and cell lysates then were separated by SDS-poly acrylamide gel electrophoresis and subjected to Western blotting to examine cross-linking formation in certain proteins. Unexpectedly, irradiation with ultrasound did not produce an observable difference in the rate of cross-linking in protein solutions. In similar experiments using cultured cells, however, we observed a significant reduction in recovery of certain proteins from cells fixed by formalin under the influence of ultrasound, which indicated that the ultrasound fixation procedure accelerated cross-linking formation within cells. Studies on protein and cell fixation without ultrasound showed that cross-linking formation was closely related to incubation temperature, which indicates that the heating function, which is inherently associated with ultrasound is another major factor in the ability of ultrasound to accelerate cross-linking.  相似文献   

2.
Membrane proteins drive and mediate many essential cellular processes making them a vital section of the proteome. However, the amphipathic nature of these molecules ensures their detailed structural analysis remains challenging. A versatile procedure for effective electrospray-ionization mass spectrometry (ESI-MS) of intact intrinsic membrane proteins purified using reverse-phase chromatography in aqueous formic acid/isopropanol is presented. The spectra of four examples, bacteriorhodopsin and its apoprotein from Halobacterium and the D1 and D2 reaction-center subunits from spinach thylakoids, achieve mass measurements that are within 0.01% of calculated theoretical values. All of the spectra reveal lesser quantities of other molecular species that can usually be equated with covalently modified subpopulations of these proteins. Our analysis of bovine rhodopsin, the first ESI-MS study of a G-protein coupled receptor, yielded a complex spectrum indicative of extensive molecular heterogeneity. The range of masses measured for the native molecule agrees well with the range calculated based upon variable glycosylation and reveals further heterogeneity arising from other covalent modifications. The technique described represents the most precise way to catalogue membrane proteins and their post-translational modifications. Resolution of the components of protein complexes provides insights into native protein/protein interactions. The apparent retention of structure by bacteriorhodopsin during the analysis raises the potential of obtaining tertiary structure information using more developed ESI-MS experiments.  相似文献   

3.
As large genomic and proteomic datasets are generated from homogenates of various tissues, the need for information on the spatial localization of their encoded products has become more pressing. Matrix-assisted laser desorption-ionization (MALDI) imaging mass spectrometry (IMS) offers investigators the means with which to unambiguously study peptides and proteins with molecular specificity, and to determine their distribution in two and three dimensions. In the past few years, several parameters have been optimized for IMS, including sample preparation, matrix application and instrumental acquisition parameters (Box 1). These developments have resulted in a high degree of reproducibility in mass accuracy and peak intensities (Supplementary Fig. 1 online). Recently, we have optimized our protocol to be able to increase the number of molecular species analyzed by collecting two sets of sections, covering one set of sections with sinapinic acid for optimal detection of proteins and adjacent sections with 2,5-dihydroxybenzoic acid (DHB) matrix for the optimal detection of low-mass species, including peptides. Approximately 1,000 peaks can be observed in each dataset (Fig. 1). Furthermore, the sections are collected at an equal distance, 200 mum instead of 400-500 mum used previously, thus enabling the use of virtual z-stacks and three-dimensional (3D) volume renderings to investigate differential localization patterns in much smaller brain structures such as the substantia nigra and the interpeduncular nucleus. Here we present our optimized step-by-step procedure based on previous work in our laboratory, describing how to make 3D volume reconstructions of MALDI IMS data, as applied to the rat brain.  相似文献   

4.
The development of electrospray ionization coupled to mass spectrometry has enabled the analysis of very large intact protein complexes, even when they are held together by weak non-covalent interactions. Together with equally spectacular advances in mass spectrometric instrumentation, a new field has emerged, termed native protein mass spectrometry, which focuses on the structural and functional analysis of the dynamics and interactions occurring in protein complexes. In the past two years, several important progressive steps in technologies have been reported that have led to exciting applications ranging from the detailed study of equilibria between different quaternary structures as influenced by environmental changes or binding of substrates or cofactors, to the analysis of intact nano-machineries, such as whole virus particles, proteasomes and ribosomes.  相似文献   

5.
Imaging mass spectrometry (MS) allows to monitor the spatial distribution and abundance of endogenous and administered compounds present within tissue specimens. Several different but complementary imaging MS technologies have been developed allowing the analysis of a wide variety of compounds including inorganic elementals, metabolites, lipids, peptides, proteins and xenobiotics with spatial resolutions from micrometer to nanometer scales. In the past decade, an enormous collective body of work has been done to develop and improve the imaging MS technology. This article gives a historical perspective, an overview of the principle and status of the technology and lists the main fields of applications. It also enumerates some of the critical challenges we need to collectively address for imaging MS to be considered a mainstream analytical method.  相似文献   

6.
MALDI MS imaging mass spectrometry can be used to map the distribution of targeted compounds in tissue sections with a spatial resolution currently of about 50 microm, providing important molecular information in many areas of biological research. After matrix application, a raster of a section by the laser beam yields ions from compounds in a tissue mass-to-charge range from 1000 to over 100000. Two-dimensional intensity maps can then be reconstructed to provide specific molecular images of a tissue.  相似文献   

7.
两栖动物酒精标本DNA模板的快速提取   总被引:1,自引:0,他引:1  
本文以中国角蟾属4个种的蝌蚪酒精固定标本为材料,取尾部肌肉组织0.1g,滤纸吸干组织块表面的酒精,在研钵中用剪刀剪碎,液氮研磨成粉(必要时可加少量石英砂),转入1.5ml离心管,加入1.0ml提取缓冲液(0.5%SDS,10mmol/L Tris-HCl,100mmol/L EDTA,pH8.0),37℃温浴h,5000r/min离心10min,取上清转入另一1.5ml离心管,氯仿/异戊醇(24:1)抽提两次,上清液加2倍体积预冷(-20℃)的无水乙醇沉淀DNA,12000r/min离心3min,无菌条件下风干后,50μl TE溶解,4℃保存备用。以通用引物PCR扩增12S rRNA和16S rRNA基因部分片段并测序。本文不采用蛋白酶K提取酒精保存标本的DNA模板,全部流程只需3个小时,可同时提取数十个乃至数百个标本,并且所提取的DNA模板适合短片段PCR扩增。  相似文献   

8.
We compared histochemical and immunohistochemical staining as well as fluorochrome labeling in murine bone specimens that were fixed with 10% neutral buffered formalin to those fixed with HistoChoice®. We showed that sections from undecalcified tibiae fixed for 4 h in HistoChoice® resulted in enhanced toluidine blue and Von Kossa histochemical staining compared to formalin fixation. HistoChoice® produced comparable or improved staining for alkaline phosphatase. Acid phosphatase localization was better in formalin fixed specimens, but osteoclasts were visuralized more easily in HistoChoice® fixed specimens. As expected, immunohistochemical labeling was antibody dependent; some antibodies labeled better in HistoChoice® fixed specimens while others were better in formalin fixed specimens. Toluidine blue, Von Kossa, and alkaline phosphatase staining of sections fixed for 12 h produced sections that were similar to 4 h fixed sections. Fixation for 12 h preserved acid phosphatase activity better. Increasing fixation to 12 h affected immunolocalization differentially. Bone sialoprotein labeling in HistoChoice® fixed specimens was comparable to formalin fixed samples. On the other hand, after 12 h formalin fixation, osteocalcin labeling was comparable to HistoChoice®. For most histochemical applications, fixing murine bone specimens for 4 h with HistoChoice® yielded superior staining compared to formalin fixation. If immunohistochemical localization is desired, however, individual antibodies must be tested to determine which fixation process retains antigenicity better. In addition, there was no detectable difference in the intensity of fluorochrome labeling using either fixative. Finally, fixation duration did not alter the intensity of labeling.  相似文献   

9.
We compared histochemical and immunohistochemical staining as well as fluorochrome labeling in murine bone specimens that were fixed with 10% neutral buffered formalin to those fixed with HistoChoice. We showed that sections from undecalcified tibiae fixed for 4 h in HistoChoice resulted in enhanced toluidine blue and Von Kossa histochemical staining compared to formalin fixation. HistoChoice produced comparable or improved staining for alkaline phosphatase. Acid phosphatase localization was better in formalin fixed specimens, but osteoclasts were visualized more easily in HistoChoice fixed specimens. As expected, immunohistochemical labeling was antibody dependent; some antibodies labeled better in HistoChoice fixed specimens while others were better in formalin fixed specimens. Toluidine blue, Von Kossa, and alkaline phosphatase staining of sections fixed for 12 h produced sections that were similar to 4 h fixed sections. Fixation for 12 h preserved acid phosphatase activity better. Increasing fixation to 12 h affected immunolocalization differentially. Bone sialoprotein labeling in HistoChoice fixed specimens was comparable to formalin fixed samples. On the other hand, after 12 h formalin fixation, osteocalcin labeling was comparable to HistoChoice. For most histochemical applications, fixing murine bone specimens for 4 h with HistoChoice yielded superior staining compared to formalin fixation. If immunohistochemical localization is desired, however, individual antibodies must be tested to determine which fixation process retains antigenicity better. In addition, there was no detectable difference in the intensity of fluorochrome labeling using either fixative. Finally, fixation duration did not alter the intensity of labeling.  相似文献   

10.
Imaging mass spectrometry (IMS) is two-dimensional mass spectrometry to visualize the spatial distribution of biomolecules, which does not need either separation or purification of target molecules, and enables us to monitor not only the identification of unknown molecules but also the localization of numerous molecules simultaneously. Among the ionization techniques, matrix assisted laser desorption/ionization (MALDI) is one of the most generally used for IMS, which allows the analysis of numerous biomolecules ranging over wide molecular weights. Proper selection and preparation of matrix is essential for successful imaging using IMS. Tandem mass spectrometry, which is referred to MSn, enables the structural analysis of a molecule detected by the first step of IMS. Applications of IMS were initially developed for studying proteins or peptides. At present, however, targets of IMS research have expanded to the imaging of small endogenous metabolites such as lipids, exogenous drug pharmacokinetics, exploring new disease markers, and other new scientific fields. We hope that this new technology will open a new era for biophysics.  相似文献   

11.
Molecular imaging of tissue by MALDI mass spectrometry is a powerful tool for visualizing the spatial distribution of constituent analytes with high molecular specificity. Although the technique is relatively young, it has already contributed to the understanding of many diverse areas of human health. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. The purpose of this review is to highlight some of the more recent technological advances that have improved the efficiency of imaging mass spectrometry for clinical applications. Advances in the way MALDI mass spectrometry is integrated with histology, improved methods for automation, and better tools for data analysis are outlined in this review. Refined top-down strategies for the identification and validation of candidate biomarkers found in tissue sections are discussed. A clinical example highlighting the application of these methods to a cohort of clinical samples is described.  相似文献   

12.
We investigated the combination of weak anion exchange (WAX) fractionation and on-line reversed-phase liquid chromatography (RPLC) separation using a 12 T FTICR mass spectrometer for the detection of intact proteins from a Shewanella oneidensis MR-1 cell lysate. This work aimed at optimizing intact protein detection for profiling proteins at a level that incorporates their modification state. A total of 715 intact proteins were detected, and the combined results from the WAX fractions and the unfractionated cell lysate were aligned using LC-MS features to facilitate protein abundance measurements. Protein identifications and post-translational modifications were assigned for approximately 10% of the detected proteins by comparing intact protein mass measurements to proteins identified in peptide MS/MS analysis of an aliquot of the same fraction. Intact proteins were also detected for S. oneidensis lysates obtained from cells grown on 13C-, 15N-depleted media under aerobic and sub-oxic conditions. The strategy can be readily applied for measuring differential protein abundances and provides a platform for high-throughput selection of biologically relevant targets for further characterization.  相似文献   

13.
Abstract

It is accepted that aldehyde-based fixation of cells can affect immunodetection of antigens; however, the effects of tissue processing on immunodetection have not been analyzed systematically. We investigated the effects of aldehyde-based fixation and the various cumulative steps of tissue processing on immunohistochemical detection of specific antigens. DU145 (prostate) and SKOV3 (ovarian) cancer cell lines were cultured as monolayers on microscope slides. Immunohistochemical detection of Ki67/MIB-1 and proliferating cell nuclear antigen (PCNA) was evaluated after various fixation times in 10% neutral buffered formalin and after each of the several cumulative steps of tissue processing. The effect of antigen retrieval (AR) was evaluated concomitantly as an additional variable. Our results indicate that in addition to fixation, each of the tissue processing steps has effects on immunorecognition of the epitopes recognized by these antibodies. Extensive dehydration through ethanols to absolute ethanol had only modest effects, except for the detection of Ki67/MIB-1 in SKOV-3 cells where the effect was stronger. In general, however, establishment of a hydrophobic environment by xylene resulted in the greatest decrease in immunorecognition. AR compensated for most, but not all, of the losses in staining following fixation and exposure to xylene; however, AR gave consistent results for most steps of tissue processing, which suggests that AR also should be used for staining PCNA. The cellular variations that were observed indicate that the effects of fixation and other steps of tissue processing may depend on how antigens are packaged by specific cells.  相似文献   

14.
We present a validated high-performance liquid chromatography/mass spectrometry (HPLC/MS) method for the quantification of malonyl-coenzyme A (CoA) in tissues. The assay consists of extraction of malonyl-CoA from tissue using 10% trichloroacetic acid, isolation using a reversed-phase solid-phase extraction column, HPLC separation, and detection using electrospray MS. Quantification was performed using an internal standard ([(13)C(3)]malonyl-CoA) and multiple-point standard curves from 50 to 1000pmol. The procedure was validated by performing recovery, accuracy, and precision studies. Recoveries of malonyl-CoA were determined to be 28.8+/-0.9, 48.5+/-1.8, and 44.7+/-4.4% (averages+/-SD, n=5) for liver, heart, and skeletal muscle, respectively. Accuracy was demonstrated by the addition of known amounts of malonyl-CoA to tissue samples. The malonyl-CoA detected was compared with the malonyl-CoA added, and the resulting relationships were linear with slopes and regression coefficients equal to 1. Precision was demonstrated by repetitive analysis of identical samples. These showed a within-run variation between 5 and 11%, and the interbatch repeatability was essentially the same. This procedure was then applied to rat liver, heart, and skeletal muscle, where the malonyl-CoA contents were found to be 1.9+/-0.6, 1.3+/-0.4, and 0.7+/-0.2nmol/g wet weight, respectively, for these tissues. This analytical approach can be extended to the quantification of other acyl-CoA species with no significant modification.  相似文献   

15.
MALDI-imaging MS is a new molecular imaging technology for direct in situ analysis of thin tissue sections. Multiple analytes can be monitored simultaneously without prior knowledge of their identities and without the need for target-specific reagents such as antibodies. Imaging MS provides important insights into biological processes because the native distributions of molecules are minimally disturbed, and histological features remain intact throughout the analysis. A wide variety of molecules can be imaged, including proteins, peptides, lipids, drugs, and metabolites. Several specific examples are presented to highlight the utility of the technology.  相似文献   

16.
Proteomics seeks to address the entire complement of protein gene products of an organism, but experimental analysis of such complex mixtures is biased against low abundance and membrane proteins. Electrospray-ionization mass spectrometry coupled with reverse-phase chromatography was used to separate and catalogue all detectable proteins in samples of photosystem II-enriched thylakoid membrane subdomains (grana) from pea and spinach. Around 90 intact mass tags were detected corresponding to approximately 40 gene products with variable post-translational covalent modifications. Provisional identity of 30 of these gene products was proposed based upon coincidence of measured mass with that calculated from genomic sequence. Analysis of isolated photosystem II complexes allowed detection and resolution of a minor population of D1 (PsbA) that was apparently palmitoylated and not detected in less purified preparations. Based upon observed +80-Da adducts, D1, D2 (PsbD), CP43 (PsbC), two Lhcbs, and PsbH were confirmed to be phosphorylated, and a new phosphoprotein was proposed to be the product of psbT. The appearance of a second +80-Da adduct on PsbH provides direct evidence for a second phosphorylation site on PsbH, complicating interpretation of its role in regulation of thylakoid membrane organization and function, including light-state transitions. Adducts of +32 Da, presumably arising from oxidative modification during illumination, were associated with more highly phosphorylated forms of PsbH implying a relationship between the two phenomena. Intact mass proteomics of organellar subfractions and more highly purified protein complexes provides increasingly detailed insights into functional genomics of photosynthetic membranes.  相似文献   

17.
The diverse proteome of an organism arises from such events as single nucleotide substitutions at the DNA level, different RNA processing, and dynamic enzymatic post-translational modifications. This minireview focuses on the measurement of intact proteins to describe the diversity found in proteomes. The field of biological mass spectrometry has steadily advanced, enabling improvements in the characterization of single proteins to proteins derived from cells or tissues. In this minireview, we discuss the basic technology for "top-down" intact protein analysis. Furthermore, examples of studies involved with the qualitative and quantitative analysis of full-length polypeptides are provided.  相似文献   

18.
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.  相似文献   

19.
We report the first application of electrospray ionisation mass spectrometry (ESI-MS) for the reproducible characterisation of strains of intact Gram-negative and Gram-positive bacteria. Electrospray ionisation was performed in both the positive and negative ion modes and the spectra obtained from Escherichia coli and Bacillus cereus were very information rich. Several of the observed negative mass ion fragments from E. coli could be assigned to specific fragmentation from bacterial phospholipids.Cluster analyses of these spectra showed that ESI-MS could be used to discriminate between these microorganisms to below species level. Therefore we conclude that ESI-MS constitutes a powerful approach to the characterisation and speciation of intact microorganisms.  相似文献   

20.
Summary Effect of formalin fixation on the dry mass of isolated rat liver nuclei was studied by interference microscopy. It was found that a fixation time of 2–6 hrs prevents completely the elution of water-extractable material from nuclei. Nuclei unfixed, water-extracted for 4 hrs lose about 20% of their initial dry mass. Fixation time longer than 6 hrs resulted also in a decrease of dry mass of the nuclei. Liquid scintillation counting of 14C-formaldehyde served for finding the influence of bound formaldehyde on dry mass values. As calculated, after 2 hrs fixation with formalin the bound formaldehyde constitutes 3.6% of the dry mass of isolated untreated nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号