首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ectodomain shedding of the amyloid precursor protein (APP) is a key regulatory step in the generation of the Alzheimer disease amyloid beta peptide (Abeta). The molecular mechanisms underlying the control of APP shedding remain little understood but are in part dependent on the low density lipoprotein receptor-related protein (LRP), which is involved in APP endocytosis. Here, we show that the APP homolog APLP1 (amyloid precursor-like protein 1) influences APP shedding. In human embryonic kidney 293 cells expression of APLP1 strongly activated APP shedding by alpha-secretase and slightly reduced beta-secretase cleavage. As revealed by domain deletion analysis, the increase in APP shedding required the NPTY amino acid motif within the cytoplasmic domain of APLP1. This motif is conserved in APP and is essential for the endocytosis of APP and APLP1. Unrelated membrane proteins containing similar endocytic motifs did not affect APP shedding, showing that the increase in APP shedding was specific to APLP1. In LRP-deficient cells APLP1 no longer induced APP shedding, suggesting that in wild-type cells APLP1 interferes with the LRP-dependent endocytosis of APP and there by increases APP alpha-cleavage. In fact, an antibody uptake assay revealed that expression of APLP1 reduced the rate of APP endocytosis. In summary, our study provides a novel mechanism for APP shedding, in which APLP1 affects the endocytosis of APP and makes more APP available for alpha-secretase cleavage.  相似文献   

2.
Amyloid beta (Aβ) precursor protein (APP) is a key protein in the pathogenesis of Alzheimer’s disease (AD). Both APP and its paralogue APLP1 (amyloid beta precursor-like protein 1) have multiple functions in cell adhesion and proliferation. Previously it was thought that autophagy is a novel beta-amyloid peptide (Aβ)-generating pathway activated in AD. However, the protein proteolysis of APLP1 is still largely unknown. The present study shows that APLP1 is rapidly degraded in neuronal cells in response to stresses, such as proteasome inhibition. Activation of the endoplasmic reticulum (ER) stress by proteasome inhibitors induces autophagy, causing reduction of mature APLP1/APP. Blocking autophagy or JNK stress kinase rescues the protein expression for both APP and APLP1. Therefore, our results suggest that APP/APLP1 is degraded through autophagy and the APLP1 proteolysis is mainly mediated by autophagy-lysosome pathway.  相似文献   

3.
Over the last 25 years, remarkable progress has been made not only in identifying key molecules of Alzheimer's disease but also in understanding their meaning in the pathogenic state. One hallmark of Alzheimer pathology is the amyloid plaque. A major component of the extracellular deposit is the amyloid-β (Aβ) peptide which is generated from its larger precursor molecule, i.e., the amyloid precursor protein (APP) by consecutive cleavages. Processing is exerted by two enzymes, i.e., the β-secretase and the γ-secretase. We and others have found that the self-association of the amyloid peptide and the dimerization and oligomerization of these proteins is a key factor under native and pathogenic conditions. In particular, the Aβ homodimer represents a nidus for plaque formation and a well defined therapeutic target. Further, dimerization of the APP was reported to increase generation of toxic Aβ whereas heterodimerization with its homologues amyloid precursor like proteins (APLP1 and APLP2) decreased Aβ formation. This review mainly focuses on structural features of the homophilic and heterophilic interactions among APP family proteins. The proposed contact sites are described and the consequences of protein dimerization on their functions and in the pathogenesis of Alzheimer's disease are discussed.  相似文献   

4.
The mammalian amyloid precursor protein (APP) protein family consists of the APP and the amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2). The neurotoxic amyloid beta-peptide (Abeta) originates from APP, which is the only member of this protein family implicated in Alzheimer disease. However, the three homologous proteins have been proposed to be processed in similar ways and to have essential and overlapping functions. Therefore, it is also important to take into account the effects on the processing and function of the APP-like proteins in the development of therapeutic drugs aimed at decreasing the production of Abeta. Insulin and insulin-like growth factor-1 (IGF-1) have been shown to regulate APP processing and the levels of Abeta in the brain. In the present study, we show that IGF-1 increases alpha-secretase processing of endogenous APP and also increases ectodomain shedding of APLP1 and APLP2 in human SH-SY5Y neuroblastoma cells. We also investigated the role of different IGF-1-induced signaling pathways, using specific inhibitors for phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK). Our results indicate that phosphatidylinositol 3-kinase is involved in ectodomain shedding of APP and APLP1, but not APLP2, and that MAPK is involved only in the ectodomain shedding of APLP1.  相似文献   

5.
Amyloid precursor protein (APP) and amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2) are members of a large gene family. Although APP is known to be the source of the beta-amyloid peptides involved in the development of Alzheimer's disease, the normal functions of APP, APLP1 and APLP2 in cells are poorly understood. In this study, we carried out gene silencing analysis by means of RNA interference with synthetic small interfering RNA duplexes targeting the App, Aplp1 and Aplp2 genes in Neuro2a (N2a) cells, a mouse neuroblastoma cell line. The results demonstrated that cell viability and neurite outgrowth of N2a cells undergoing knockdown of Aplp1 were significantly reduced, compared with N2a cells undergoing knockdown of either App or Aplp2.  相似文献   

6.
Regulated intramembrane proteolysis (RIP) of the amyloid precursor protein (APP) produces amyloid beta-protein (Abeta), the probable causative agent of Alzheimer's disease (AD), and is therefore an important target for therapeutic intervention. However, there is a burgeoning consensus that gamma-secretase, one of the proteases that generates Abeta, is also critical for the signal transduction of APP and a growing list of other receptors. APP is a member of a gene family that includes two amyloid precursor-like proteins, APLP1 and APLP2. Although APP and the APLPs undergo similar proteolytic processing, there is little information about the role of their gamma-secretase-generated intracellular domains (ICDs). Here, we show that APLP1 and 2 undergo presenilin-dependent RIP similar to APP, resulting in the release of a approximately 6 kDa ICD for each protein. Each of the ICDs are degraded by an insulin degrading enzyme-like activity, but they can be stabilized by members of the FE65 family and translocate to the nucleus. Given that modulation of APP processing is a therapeutic target and that the APLPs are processed in a manner similar to APP, any strategy aimed at altering APP proteolysis will have to take into account possible effects on signaling by APLP 1 and 2.  相似文献   

7.
The Alzheimer's disease βA4 amyloid precursor protein (APP) has been shown to be involved in a diverse set of biological protein precursor-like proteins (APLP1 and APLP2) belong to a superfamily of proteins that are probably functionally related. In order to characterize the cell adhesion properties of APP the brain specific isoform APP695 was purified and used to assess the binding to herparin, a structural and functional analogue of the glycosaminoglycan heparan sulfate. We show that APP binds in a time dependent and saturable manner to heparin. The salt concentration of 620 mM at which APP elutes from heparin Sepharose is greater than physiological. Tha apparent equilibrium constant for dissociation was determined to be 300 pM for APP binding to heparin Sepharose. A high affinity heparin binding site was identified within a region conversed in rodent and human APP, APLP1 and APLP2. This binding site was located between residues 316-337 of APP695 which is within the carbohydrate domain of APP. We also demonstrate an interaction between this heparin binding site and the zinc(II) binding site which is conserved in all members of the APP superfamily. We show by using an automated surface plasmon resonance biosensor (BIAcore, Pharmacia) that the affinity for heparin is increased two- to four-fold in the presence of micromolar zinc(II). The identification of zinc-enhanced binding of APP to heparin sulfate side chains of proteoglycans offers a molecular link between zinc(II), as a putative environmental toxin for Alzheimer's disease, and aggregation of amyloid βA4 protein.  相似文献   

8.
The amyloid precursor protein (APP) belongs to a conserved gene family, also including the amyloid precursor-like proteins, APLP1 and APLP2. We have previously shown that all members of the APP protein family are up-regulated upon retinoic acid (RA)-induced neuronal differentiation of SH-SY5Y neuroblastoma cells. Here, we demonstrate that RA also affects the processing of APLP2 and APP, as shown by increased shedding of both sAPLP2 and sAPPalpha, as well as elevated levels of the APP intracellular domains (AICDs). Brain-derived neurotrophic factor (BDNF) has been reported to induce APP promoter activity and RA induces expression of the tyrosine kinase receptor B (TrkB) in neuroblastoma cells. We show that the increase in shedding of both APLP2 and APP in response to RA is not mediated through the TrkB receptor. However, BDNF concomitant with RA increased the expression of APP even further. In addition, the secretion of sAPLP2 and sAPPalpha as well as the levels of AICDs were increased in response to BDNF. In contrast, the levels of membrane-bound APP C-terminal fragment C99 significantly decreased. Our results suggest that RA and BDNF shifts APP processing towards the alpha-secretase pathway. In addition, we show that RA and BDNF regulate N-linked glycosylation of APLP1.  相似文献   

9.
Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development.  相似文献   

10.
Beta-amyloid precursor protein (APP) is the precursor of beta-amyloid (Abeta), which is implicated in Alzheimer's disease pathogenesis. APP complements amyloid precursor-like protein 2 (APLP2), and together they play essential physiological roles. Phosphorylation at the Thr(668) residue of APP (with respect to the numbering conversion for the APP 695 isoform) and the Thr(736) residue of APLP2 (with respect to the numbering conversion for the APLP2 763 isoform) in their cytoplasmic domains acts as a molecular switch for their protein-protein interaction and is implicated in neural function(s) and/or Alzheimer's disease pathogenesis. Here we demonstrate that both APP and APLP2 can be phosphorylated by JNK at the Thr(668) and Thr(736) residues, respectively, in response to cellular stress. X11-like (X11L, also referred to as X11beta and Mint2), which is a member of the mammalian LIN-10 protein family and a possible regulator of Abeta production, elevated APP and APLP2 phosphorylation probably by facilitating JNK-mediated phosphorylation, whereas other members of the family, X11 and X11L2, did not. These observations revealed an involvement of X11L in the phosphorylation of APP family proteins in cellular stress and suggest that X11L protein may be important in the physiology of APP family proteins as well as in the regulation of Abeta production.  相似文献   

11.
The physiological function of amyloid precursor protein (APP) and its two homologues APP-like protein 1 (APLP1) and 2 (APLP2) is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain), APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for “double mutants”). We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R). Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM) which showed, however, reduced long-term potentiation (LTP). Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.  相似文献   

12.
The Alzheimer's disease amyloid protein precursor (APP) gene is part of a multi-gene super-family from which sixteen homologous amyloid precursor-like proteins (APLP) and APP species homologues have been isolated and characterised. Comparison of exon structure (including the uncharacterised APL-1 gene), construction of phylogenetic trees, and analysis of the protein sequence alignment of known homologues of the APP super-family were performed to reconstruct the evolution of the family and to assess the functional significance of conserved protein sequences between homologues. This analysis supports an adhesion function for all members of the APP super family, with specificity determined by those sequences which are not conserved between APLP lineages, and provides evidence for an increasingly complex APP superfamily during evolution. The analysis also suggests that Drosophila APPL and Caenorhabditis elegans APL-1 may be a fourth APLP lineage indicating that these proteins, while not functional homologues of human APP, are similarly likely to regulate cell adhesion. Furthermore, the betaA4 sequence is highly conserved only in APP orthologues, strongly suggesting this sequence is of significant functional importance in this lineage.  相似文献   

13.
The amyloid precursor protein (APP) and the APP-like proteins 1 and 2 (APLP1 and APLP2) are a family of multidomain transmembrane proteins possessing homo- and heterotypic contact sites in their ectodomains. We previously reported that divalent metal ions dictate the conformation of the extracellular APP E2 domain (Dahms, S. O., Könnig, I., Roeser, D., Gührs, K.-H., Mayer, M. C., Kaden, D., Multhaup, G., and Than, M. E. (2012) J. Mol. Biol. 416, 438–452), but unresolved is the nature and functional importance of metal ion binding to APLP1 and APLP2. We found here that zinc ions bound to APP and APLP1 E2 domains and mediated their oligomerization, whereas the APLP2 E2 domain interacted more weakly with zinc possessing a less surface-exposed zinc-binding site, and stayed monomeric. Copper ions bound to E2 domains of all three proteins. Fluorescence resonance energy transfer (FRET) analyses examined the effect of metal ion binding to APP and APLPs in the cellular context in real time. Zinc ions specifically induced APP and APLP1 oligomerization and forced APLP1 into multimeric clusters at the plasma membrane consistent with zinc concentrations in the blood and brain. The observed effects were mediated by a novel zinc-binding site within the APLP1 E2 domain as APLP1 deletion mutants revealed. Based upon its cellular localization and its dominant response to zinc ions, APLP1 is mainly affected by extracellular zinc among the APP family proteins. We conclude that zinc binding and APP/APLP oligomerization are intimately linked, and we propose that this represents a novel mechanism for regulating APP/APLP protein function at the molecular level.  相似文献   

14.
Processing of the recycling proteoglycan glypican-1 involves the release of its heparan sulfate chains by copper ion- and nitric oxide-catalyzed ascorbate-triggered autodegradation. The Alzheimer disease amyloid precursor protein (APP) and its paralogue, the amyloid precursor-like protein 2 (APLP2), contain copper ion-, zinc ion-, and heparan sulfate-binding domains. We have investigated the possibility that APP and APLP2 regulate glypican-1 processing during endocytosis and recycling. By using cell-free biochemical experiments, confocal laser immunofluorescence microscopy, and flow cytometry of tissues and cells from wild-type and knock-out mice, we find that (a) APP and glypican-1 colocalize in perinuclear compartments of neuroblastoma cells, (b) ascorbate-triggered nitric oxidecatalyzed glypican-1 autodegradation is zinc ion-dependent in the same cells, (c) in cell-free experiments, APP but not APLP2 stimulates glypican-1 autodegradation in the presence of both Cu(II) and Zn(II) ions, whereas the Cu(I) form of APP and the Cu(II) and Cu(I) forms of APLP2 inhibit autodegradation, (d) in primary cortical neurons from APP or APLP2 knock-out mice, there is an increased nitric oxide-catalyzed degradation of heparan sulfate compared with brain tissue and neurons from wild-type mice, and (e) in growth-quiescent fibroblasts from APLP2 knock-out mice, but not from APP knock-out mice, there is also an increased heparan sulfate degradation. We propose that the rate of autoprocessing of glypican-1 is modulated by APP and APLP2 in neurons and by APLP2 in fibroblasts. These observation identify a functional relationship between the heparan sulfate and copper ion binding activities of APP/APLP2 in their modulation of the nitroxyl anion-catalyzed heparan sulfate degradation in glypican-1.  相似文献   

15.
The key protein in Alzheimer's disease, the amyloid precursor protein (APP), is a ubiquitously expressed copper-binding glycoprotein that gives rise to the Abeta amyloid peptide. Whereas overexpression of APP results in significantly reduced brain copper levels in three different lines of transgenic mice, knock-out animals revealed increased copper levels. A provoked rise in peripheral levels of copper reduced concentrations of soluble amyloid peptides and resulted in fewer pathogenic Abeta plaques. Contradictory evidence has been provided by the efficacy of copper chelation treatment with the drug clioquinol. Using a yeast model system, we show that adding clioquinol to the yeast culture medium drastically increased the intracellular copper concentration but there was no significant effect observed on zinc levels. This finding suggests that clioquinol can act therapeutically by changing the distribution of copper or facilitating copper uptake rather than by decreasing copper levels. The overexpression of the human APP or APLP2 extracellular domains but not the extracellular domain of APLP1 decreased intracellular copper levels. The expression of a mutant APP deficient for copper binding increased intracellular copper levels several-fold. These data uncover a novel biological function for APP and APLP2 in copper efflux and provide a new conceptual framework for the formerly diverging theories of copper supplementation and chelation in the treatment of Alzheimer's disease.  相似文献   

16.
Abstract: The Alzheimer amyloid precursor (APP) protein is a member of a family of glycoproteins that includes the amyloid precursor-like proteins (APLPs). Previously, we showed that in C6 glioma cell cultures, secreted APP nexin II occurs as the core protein of a chondroitin sulfate proteoglycan (CSPG). Here, we report that among seven untransfected cell lines, expression of secreted APP CSPG was restricted to two cell lines of neural origin, namely, C6 glioma and Neuro-2a neuroblastoma (N2a) cells. Addition of dibutyryl cyclic AMP in N2a cultures, a treatment that induces the neuronal phenotype in these cells, resulted in a significant reduction in the amount of the secreted APP CSPG, although secretion of APP was only marginally affected. Growth in the presence of serum increased the size of the secreted APP CSPG, suggesting that the number and/or length of the chondroitin sulfate (CS) chains attached to the core APP varies with growth conditions. Extensive mapping with epitope-specific anti-bodies suggested that a CS chain is attached within or proximal to the Aβ sequence of APP. In contrast to the restricted expression of the APP CSPG, expression of secreted APLP2 CSPGs was observed in all cell lines examined. After chondroitinase treatment, two core proteins of ∼100 and 110 kDa were obtained that reacted with an APLP2-specific antiserum, suggesting that non-transfected cell lines contain at least two endogenous APLP2 CSPGs, probably derived by alternative splicing of the APLP2 KPI domain. The fraction of the APLP2 proteins in the CSPG form was dependent on the particular cell line examined. The proteoglycan nature of APP and APLP2 suggests that addition of the CS glycosaminoglycan chains is important for the implementation of the biological function of these proteins. However, the differential expression of these two proteoglycans suggests that their physiological roles and their possible involvement in Alzheimer's disease may differ.  相似文献   

17.
Growing evidence shows that the soluble N-terminal form (sAPPalpha) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPalpha, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPalpha has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts.  相似文献   

18.
The function of amyloid precursor protein (APP) is unknown, although the discovery that it contributes to the regulation of surface expression of N‐methyl‐d ‐aspartate (NMDA) receptors has afforded new insights into its functional significance. Since APP is a member of a gene family that contains two other members, amyloid precursor‐like proteins 1 and 2 (APLP1 and APLP2), it is important to determine if the related APP proteins possess the same properties as APP with respect to their interactions with NMDA receptors. Following expression in mammalian cells, both APLP1 and APLP2 behaved similarly to APP in that they both co‐immunoprecipitated with the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B, via interaction with the obligatory GluN1 subunit. Immunoprecipitations from detergent extracts of adult mammalian brain showed co‐immunoprecipitation of APLP1 and APLP2 with GluN2A‐ and GluN2B‐containing NMDA receptors. Furthermore, similarly to APP, APLP1 and APLP2 both enhanced GluN1/GluN2A and GluN1/GluN2B cell surface expression. Thus, all the three members of the APP gene family behave similarly in that they each contribute to the regulation of cell surface NMDA receptor homoeostasis.

  相似文献   


19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号