首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

2.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

3.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leum-Pro-Glu-Ala-Leun (m=0-4, n=0-3). Neither Pro-Glu-Ala-Leu (m=0) nor Leu-Pro-Glu-Ala (n=0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leum-Pro-Glu-Ala-Leu increased with the increase of m=1 to 2 and 3, but was however, essentially same with the increase of m=3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leun increased with the increase of n=0 to 1 and 2, but was essentially same with the increase of n=2 to 3. Then, it was concluded that cucumisin has a S5-S3′ subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1′ position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1′ positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

4.
The biotin-containing tryptic peptides of pyruvate carboxylase from sheep, chicken, and turkey liver mitochondria have been isolated and their primary structures determined. The amino acid sequences of the 19 residue peptides from chicken and turkey are identical and share a common sequence of 14 residues around biocytin with the 24-residue peptide isolated from sheep. The sequences obtained were: residue 1 → 11 Avian: Gly Ala Pro Leu Val Leu Ser Ala Met Biocytin Met Sheep: Gly Gln Pro Leu Val Leu Ser Ala Met Biocytin Met residues 12 → 19 or 24 Avian: Glu Thr Val Val Thr Ala Pro Arg Sheep: Glu Thr Val Val Thr Ser Pro Val Thr Glu Gly Val Arg A sensitive radiochemical assay for biotin was developed based on the tight binding of biotin by avidin. The ability of zinc sulfate to precipitate, without dissociating, the avidin-biotin complex provided a convenient procedure for separating free and bound biotin, and hence, for back-titrating a standard amount of avidin with [14C]biotin.  相似文献   

5.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

6.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

7.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

8.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

9.
Selective cleavage of peptide bonds by cathepsins L and B from rat liver   总被引:1,自引:0,他引:1  
The selective cleavage of peptide bonds by cathepsin L from rat liver was examined with a hexapeptide, luteinizing hormone releasing hormone, neurotensin and oxidized insulin A chain as model substrates. The specificity of cathepsin L was compared with that of cathepsin B. Cathepsin L cleaved peptide bonds that have a hydrophobic amino acid, such as Phe, Leu, Val, and Trp or Tyr, in position P2. A polar amino acid, such as Tyr, Ser, Gly, Glu, Asp, Gln, or Asn, in position P1. enhanced the susceptibility of the peptide bond to cathepsin L, though the importance of the amino acid residue in position P1' was not as great as that of the amino acid in position P2 for the action of cathepsin L. These results suggest that, in contrast to cathepsin B, cathepsin L shows very clear specificity.  相似文献   

10.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

11.
In a previous study, we prepared a monoclonal antibody (MoAb) to coagulation factor IX (FIX), designated 65-10, which interfered with the activation of FIX by the activated factor XI/Ca(2+) and neutralized the prolonged ox brain prothrombin time of hemophilia B(M) [11,12]. The location of the epitope on the FIX for 65-10 MoAb is (168) Ile-Thr-Gln-Ser-Thr-Gln-Ser-Phe-Asn-Asp-Phe-Thr-Arg-Val-Val(182) [21]. In this paper, we studied in more detail an epitope on FIX using the systematic substitution of different amino acids at each residue of the epitope peptides and the influence of the epitope peptide on the prolonged ox brain prothrombin time of the hemophilia B(M) plasma of 65-10 MoAb. In the replacement set of amino acids, peptides showing low or no reactivity to 65-10 were (175)Phe --> Asp, Glu, Gly, Lys, Arg, Thr, Val, (176)Asn --> Asp, Glu, Phe, Ile, Lys, Leu, Pro, Val, Tyr, (177)Asp --> Cys, Glu, Phe, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp, Tyr, and (178) Phe --> Pro. These results imply that a hydrophobic molecule of (175) Phe, a hydrophilic molecule of (176)Asn, and a negative charge molecule of (177)Asp were important to the epitope. The 65-10 MoAb antibody neutralized the prolonged ox brain prothrombin time of hemophilia B(M) Nagoya 2 ((180)Arg -->Trp) and Kashihara ((181)Val --> Phe) as well as B(M) Kiryu ((313)Val --> Asp) and Niigata ((390)Ala --> Val). This reaction was inhibited by preincubation with a (168) Ile-Thr-Gln-Ser-Thr-Gln-Ser-Phe-Asn-Asp-Phe-Thr-Arg-Val-Val(182) peptide conjugated with bovine serum albumin (BSA). 65-10 MoAb that has been useful in detailing epitopes will be useful for qualitative analysis of hemophilia B(M).  相似文献   

12.
Using recombinant DNA methods, seven cystatin variants were produced by cassette mutagenesis of a chicken egg white cystatin variant which already contains the mutations Ala3, Glu2, Phe1, Ser1-->Met, Met29-->and Met 89-->Leu. When characterized by structural and functional studies, they were all found to harbour mutations in the first hairpin loop, the so-called 'QXVXG' region, which is highly conserved within the cystatin superfamily and thought to be important for its inhibitory activity towards cysteine proteinases. They were purified to more than 90% homogeneity and analysed by SDS/PAGE, HPLC, tryptic peptide mapping, N-terminal amino acid sequencing and ELISA. Structural model building of the variants and their complexes with papain was performed using computer graphics based on the crystallographic coordinates of chicken egg white cystatin and the papain-stefin complex. Only minor conformational changes were required for modelling the mutants or complexes. Equilibrium dissociation constants and rate constants of complex formation of the variants with papain, actinidin as well as cathepsin B and L were determined by kinetic measurements using fluorogenic substrates. The single exchanges Gln53-->Glu, Gln53-->Asn, Val44-->Asp, Gly57-->Ala and the double exchanges Arg52-->Leu, Gln53-->Glu, Gln53-->Asn, Ser56-->Ala, Leu54-->Met, Gly57-->Ala reduced the inhibition of papain, actinidin and cathespin B significantly by 10-1000-fold. With the exception of the Val55-->Asp variant, the differences in the Ki values are mainly due to larger k off values, whereas the kon values seem to be more or less unaffected by the selected mutations. The effect on the inhibition of papain is generally smaller than the effects on actinidin and cathepsin B inhibition. Cathepsin L inhibition is strikingly insensitive to all mutations. These distinct effects of the inhibitor variants indicate differences in proteinase-inhibitor-protein interactions between closely related cysteine proteinases. In addition, the results verify the prediction, made earlier from sequence alignment studies and from a docking model of the chicken cystatin-papain complex, that the first hairpin loop of cystatins is essential for effective inhibition.  相似文献   

13.
STUDY OBJECTIVE: In this study, the exonic regions of the circadian rhythm genes PER1, PER2, PER3, CLOCK, ARNTL, CRY1, CRY2 and TIMELESS were re-sequenced and coding changes identified in a panel of 95 individuals varying in ethnicity. STUDY PARTICIPANTS: DNA screening panel consisting of 95 DNA samples (17 American Caucasians, 17 African Americans, 8 Ashkenazi Jews, 8 Chinese, 8 Japanese, 5 Mexican Indians, 8 Mexicans, 8 Northern Europeans, 8 Puerto Ricans, and 8 South Americans) selected from the Coriell Institute Human Variation Panel. RESULTS: In addition to coding changes already identified in the database dbSNP, novel coding changes were identified, including PER1: Pro37Ser, Pro351Ser, Gln988Pro, Ala998Thr; PER2: Leu83Arg, Leu157Leu, Thre174Ile, Phe400Phe, Pro822Pro, Ala828Thr, Ala861Val, Phe876Leu, Val883Met, Val903Ile, Ala923Pro; PER3: Pro67Pro, Val90Ile, His638His, Ala820Ala, Leu929Leu; ARNTL: Arg166Gln, Ser459Phe; CLOCK: Ala34Ala, Ser208Cys, Phe233Phe, Ser632Thr, Ser816Ser; TIMELESS: Met870Val and CRY2: His35His. No coding polymorphisms were identified in CRY1. CONCLUSIONS: Considerable genetic variation occurs within the coding region of the genes regulating circadian rhythm. Many of the non-synonymous coding polymorphisms could affect protein structure/function with the potential to affect molecular regulation of the sleep/wake cycle. Many of the potential functional effects could be ethnic group specific.  相似文献   

14.
A new corticotropin-like intermediate lobe peptide (CLIP) has been identified in the pituitary of chum salmon, Oncorhynchus keta. The newly isolated peptide is a tetracosa peptide, which is two residues longer than the predominant form, CLIP I, with the following amino acid sequence, H-ArgProIleLysValTyrAlaSerSerLeuGlu GlyGlyAspSerSerGluGlyThrPheProLeuGlnAlaOH. This peptide, named CLIP II is the fourth line of evidence in the teleost that the pituitary gland secretes two different forms of processed hormones, for which precursor molecules are coded on two separate genes. Together with the structures of α-melanotropin I and II, two putative ACTH molecules are proposed.  相似文献   

15.
NH2-terminal sequence analysis was performed on subregions of human plasma fibronectin including 24,000-dalton (24K) DNA-binding, 29,000-dalton (29K) gelatin-binding, and 18,000-dalton (18K) heparin-binding tryptic fragments. These fragments were obtained from fibronectin after extensive trypsin digestion followed by sequential affinity purification on gelatin-Sepharose, heparin-agarose, and DNA-cellulose columns. The gelatin-binding fragment was further purified by gel filtration on Sephadex G-100, and the DNA-binding and heparin-binding fragments were further purified by high-performance liquid chromatography. The 29K fragment had the following NH2-terminal sequence: AlaAlaValTyrGlnProGlnProHisProGlnProPro (Pro)TyrGlyHis HisValThrAsp(His)(Thr)ValValTyrGly(Ser) ?(Ser)?-Lys. The NH2-terminal sequence of a 50K, gelatin-binding, subtilisin fragment by L. I. Gold, A. Garcia-Pardo, B. Prangione, E. C. Franklin, and E. Pearlstein (1979, Proc. Nat. Acad. Sci. USA76, 4803–4807) is identical to positions 3–19 (with the exception of some ambiguity at position 14) of the 29K fragment. These data strongly suggest that the 29K tryptic fragment is included in the 50K subtilisin fragment, and that subtilisin cleaves fibronectin between the Ala2Val3 residues of the 29K tryptic fragment. The 18K heparin-binding fragment had the following NH2-terminal sequence: (Glu)AlaProGlnProHisCysIleSerLysTyrIle LeuTyrTrpAspProLysAsnSerValGly?(Pro) LysGluAla?(Val)(Pro). The 29K gelatin-binding and 18K heparin-binding fragments have proline-rich NH2-terminal sequences suggesting that they may have arisen from protease-sensitive, random coil regions of fibronectin corresponding to interdomain regions preceding macromolecular-binding domains. Both of these fragments contain the identical sequence ProGlnProHis, a sequence which may be repeated in other interdomain regions of fibronectin. The 24K DNA-binding fragment has the following NH2-terminal sequence: SerAspThrValProSerProCysAspLeuGlnPhe ValGluValThrAspVal LysValThrIleMetTrpThrProProGluSerAla ValThrGlyTyrArgVal AspValCysProValAsnLeuProGlyGluHisGly Gln(Cys)LeuProIleSer. The sequence of positions 9–22 are homologous to positions 15–28 of the α chain of DNA-dependent RNA polymerase from Escherichia coli. The homology observed suggests that this stretch of amino acids may be a DNA-binding site.  相似文献   

16.
The complete amino acid sequence of Penicillium chrysogenum 152A guanyl-specific RNase has been established using automated Edman degradation of two non-fractionated peptide mixtures produced by tryptic and staphylococcal protease digests of the protein. The RNase contains 102 amino acid residues: His2, Arg3, Asp7, Asn8, Thr5, Ser11, Glu4, Gln2, Pro4, Gly11, Ala13, Cys4, Val8, Ile3, Leu3, Tyr9, Phe5 (Mr 10 747).  相似文献   

17.
N2 is the second position in the alpha-helix. All 20 amino acids were placed in the N2 position of a synthetic helical peptide (CH(3)CO-[AXAAAAKAAAAKAAGY]-NH(2)) and the helix content was measured by circular dichroism spectroscopy at 273K. The dependence of peptide helicity on N2 residue identity has been used to determine a free-energy scale by analysis with a modified Lifson-Roig helix-coil theory that includes a parameter for the N2 energy (n2). The rank order of DeltaDeltaG((relative to Ala)) is Glu(-), Asp(-) > Ala > Glu(0), Leu, Val, Gln, Thr, Ile, Ser, Met, Asp(0), His(0), Arg, Cys, Lys, Phe > Asn, > Gly, His(+), Pro, Tyr. The results correlate very well with N2 propensities in proteins, moderately well with N1 and helix interior preferences, and not at all with N-cap preferences. The strongest energetic effects result from interactions with the helix dipole, which favors negative charges at the helix N terminus. Hydrogen bonds to side chains at N2, such as Gln, Ser, and Thr, are weak, despite occurring frequently in protein crystal structures, in contrast to the N-cap position. This is because N-cap hydrogen bonds are close to linear, whereas N2 hydrogen bonds have poor geometry. These results can be used to modify protein stability rationally, help design helices, and improve prediction of helix location and stability.  相似文献   

18.
Nukacin ISK-1, a type-A(II) lantibiotic, comprises 27 amino acids with a distinct linear N-terminal and a globular C-terminal region. To identify the positional importance or redundancy of individual residues responsible for nukacin ISK-1 antimicrobial activity, we replaced the native codons of the parent peptide with NNK triplet oligonucleotides in order to generate a bank of nukacin ISK-1 variants. The bioactivity of each peptide variant was evaluated by colony overlay assay, and hence we identified three Lys residues (Lys1, Lys2 and Lys3) that provided electrostatic interactions with the target membrane and were significantly variable. The ring structure of nukacin ISK-1 was found to be crucially important as replacing the ring-forming residues caused a complete loss of bioactivity. In addition to the ring-forming residues, Gly5, His12, Asp13, Met16, Asn17 and Gln20 residues were found to be essential for antimicrobial activity; Val6, Ile7, Val10, Phe19, Phe21, Val22, Phe23 and Thr24 were relatively variable; and Ser4, Pro8, His15 and Ser27 were extensively variable relative to their positions. We obtained two variants, Asp13Glu and Val22Ile, which exhibited a twofold higher specific activity compared with the wild-type and are the first reported type-A(II) lantibiotic mutant peptides with increased potency.  相似文献   

19.
A 36-kDa trypsin inhibitor was purified from Clostridium botulinum type E culture supernatant by multiple molecular sieve and ion exchange chromatographic steps. The sequence of the amino-terminal 13 amino acid residues of this single-chain protein is Asn.Gln.Glu.Val.Phe.Asn.Met.Pro.Lys.Phe.Ser.Thr.Ala-. This novel protein that also inhibits chymotrypsin is produced by an organism that does not appear to produce any protease.  相似文献   

20.
Nutrients in uterine secretions are essential for development and survival of conceptuses (embryo and associated extraembryonic membranes) during pregnancy; however, little is known about changes in the amounts of specific nutrients in the uterine fluids of cyclic and pregnant ruminants. This study determined quantities of glucose, amino acids, glutathione, calcium, sodium, and potassium in uterine lumenal fluid from cyclic (Days 3-16) and pregnant (Days 10-16) ewes. Total recoverable glucose, Arg, Gln, Leu, Asp, Glu, Asn, His, beta-Ala, Tyr, Trp, Met, Val, Phe, Ile, Lys, Cys, Pro, glutathione, calcium, and sodium were greater in the uterine fluid of pregnant compared with cyclic ewes between Days 10 and 16. In cyclic ewes, only modest changes in the total amounts of glucose, Asn, Cit, Tyr, Trp, Met, Val, Cys, glutathione, calcium, and potassium were detected between Days 3 and 16. However, in pregnant ewes, amounts of glucose, Arg, Gln, Glu, Gly, Cys, Leu, Pro, glutathione, calcium, and potassium in uterine fluids increased 3- to 23-fold between Days 10 and 14 and remained high to Day 16. Of particular interest were increases in glucose, Arg, Leu, and Gln in uterine flushings of pregnant ewes between Days 10 and 16 of pregnancy. Total amounts of His, ornithine, Lys, Ser, Thr, Ile, Phe, Trp, Met, and Cit in uterine fluids also increased, but to a lesser extent during early pregnancy. These novel results indicate activation of pregnancy-associated mechanisms for transport of nutrients into the uterine lumen, and they provide a framework for future studies of nutrients, including glucose, amino acids, and glutathione, required to activate nutrient-sensing cell signaling pathways for growth, development, and survival of conceptuses, as well as for optimization of culture media for in vitro studies of conceptus development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号